
(Fig. 10). The northern depocentre was not active during the very
earliest Quaternary (2.58 – 2.35 Ma; Table 1) and only began to
show signs of deposition from 2.35 Ma, merging with the southern
depocentre by 1.94 Ma (Fig. 10c). The southern depocentre covers
an area of just over 6000 km2, defined by the 40 m thickness contour,
with a solid sediment volume of over 7000 km3, giving an average
sedimentation rate for the earliest Quaternary (2.58 – 2.35 Ma) of
31.6 km3 ka−1. In comparison, the entirety of the Quaternary saw an
overall average sedimentation rate of 15.5 km3 ka−1 (between 2.58
Ma and present day), with rates of 11 km3 ka−1, 23.5 km3 ka−1 and
7.7 km3 ka−1 respectively for the periods of 2.35–1.94 Ma, 1.94–
1.1 Ma and 1.1 Ma to present day (Fig. 6).

Paleogeography

Paleogeographical information is contained within borehole
records of lithofacies and biostratigraphy coupled with seismic
geomorphological evidence usually extracted from analysis of
extractions of seismic attributes across the mapped surface. Features
are interpreted relative to methods of formation and sorted by
paleogeographical context; for example, slope channels (Fig. 11a)
indicating modes of sediment distribution downslope.

In this study, seismic amplitude extractions of the baseQuaternary
surface reveal little evidence for slope features such as channels or
basinal fans. Instead, the slopes of the base Quaternary surface are
characterized by a relatively consistent, medium- to low-amplitude
seismic facies with little evidence of facies changes between the roll-
over and the slopes of the basal clinoform. The topsets of the
clinoform package are typically strongly influenced by velocity
effects from tunnel valleys in the overburden (Fig. 2a) or by survey
imprints, although when clearly imaged in local areas the topsets do
demonstrate a more chaotic seismic facies. Tunnel valleys are
subglacial drainage conduits and are common in the Middle to Late
Quaternary of the North Sea (Praeg 1996, 2003; Stewart & Lonergan
2011;Kristensen&Huuse 2012; Stewart et al. 2012, 2013;Moreau&
Huuse 2014). Artefacts caused by tunnel valleys and survey imprints
are relatively easily to detect by comparing reflection patterns through
successive horizontal time slices, with systematically repeating
patterns more likely to be artefacts. In vertical cross-sections, the
topsets of the eastern clinoform package show small truncational
depressions on the base Quaternary surface that are closely connected
with a series of elongated, near-linear features with U-shaped cross-
sections oriented broadly downslope in map and perspective views
(Fig. 11b). The linear features imprint on the basal Quaternary surface
in the deepest parts of the basin although they initially incise from a

shallower horizon (Fig. 2). In comparison with the base Quaternary
surface, horizons within the 2.58 – 2.35 Ma package show multiple
preserved downslope channels and mass transport deposits on the
slopes and toesets, principally in the southern portion of the
Quaternary basin (e.g. Fig. 11a).

Discussion

Onset of the Quaternary

Structural mapping, backstripping calculations and seismic ampli-
tude extractions of the basal Quaternary reflection reveal that the
North Sea Basin, at the beginning of the Quaternary, consisted of an
elongate basin, 600 km long, with maximum water depths in the
region of 300 m. This basin is enclosed by the NW European
landmasses on three sides, with a narrow marine connection to the
north (Fig. 12). At the onset of the Quaternary the basin showed a
distinct lack of slope features, such as mass transport deposits or
downslope channels, with limited evidence for a change in facies
between the topsets of the basin shelf and the slope. Mapping of the
subcrop beneath the basal Quaternary horizon reveals a pattern of
early Cenozoic sediments in the north and west of the basin
gradually increasing in age towards the edge of the basin and
forming an unconformity between the Quaternary basin infill and
the older subcrop strata (Figs 7 and 8). Towards the south and east
the slopes of the basin are formed of Pliocene clinoformal sediments
and are conformable with the Quaternary basin infill (Figs 7 and 8).
The primary reasons for the asymmetry in subcrop age relate to the
regional structural controls of the underlying central graben and the
eastern North Sea Basin offering greater accommodation to
sediments supplied from around the basin and the relative sediment
inputs through time between southern Norway, the Scottish
mainland and NW Europe. These factors gave rise to the clockwise
arrangement of clinoform breakpoints through the Cenozoic (e.g.
Huuse et al. 2001), which set up the template on which the base
Quaternary formed, with the southeastern part being a conformable
continuation of the Neogene progradation from the Baltic region
whereas the western and northern parts are characterized by greater
hiati owing to erosion and onlap.

The structure of the subcrop leads to an asymmetry in the age of
the underlying sediments (Fig. 7), which is likely to have some
influence on the compaction pattern of the Quaternary sediments.
The Pliocene subcrop was deposited quickly, retaining the potential
to compact under the Pleistocene load; however, the Mesozoic and
Paleogene strata to the NW are exhumed and thus already

Fig. 11. (a) Seismic amplitude extraction of horizon within the earliest (2.58 – 2.35 Ma) Quaternary package in the southern North Sea showing downslope
channels and fan deposits on the clinoform slopes and toesets. (b) Seismic amplitude extraction across base Quaternary (2.58 Ma) surface in the central
North Sea showing elongate, semi-parallel furrows linked to deep-water processes.

285The early Quaternary North Sea Basin

 by guest on January 18, 2019http://jgs.lyellcollection.org/Downloaded from 



compacted, with minimal potential for further compaction. Late
Cenozoic Zechstein salt diapirs are observed to have deformed pre-
Quaternary sediments, resulting in elevation of Mesozoic to Late
Permian deposits to the base or even into the fill of the Quaternary
North Sea Basin (Figs 7, 8 and 11b). The shallow sill to the north
coincides with an area where the relatively narrow South Viking
Graben has been overfilled by Tertiary sediments, leaving a
relatively narrow and shallow seaway between the broader and
comparatively under-filled Central Graben and North Viking
Graben (Ziegler 1992).

The observations of the North Sea Basin, as it was at the onset
of the Quaternary, are found to be in agreement with a number of
other early Quaternary paleo-environmental studies. Thickness
maps of Quaternary sediments have previously identified the
elongate depocentre (e.g. Holmes 1977; Cameron et al. 1987;
Gatliff et al. 1994), although its true shape is only now revealed
because of the much greater density of seismic data used in this

study. Biostratigraphic studies and clinoform geometries reported in
previous more localized studies suggest paleo-water depths of
100 – 300 m in the deepest part of the basin (e.g. Overeem et al.
2001; Huuse 2002; Kuhlmann 2004; King 2016), in agreement with
the present study. The lack of slope features on the basal Quaternary
surface, as well as limited evidence for extensive facies change
between the topset and the slope, is suggestive of the sediment
source for the clinoforms being located a significant distance from
the clinoform break point (Posamentier & Vail 1988; Mulder &
Alexander 2001; Mulder et al. 2003). If the delta is a significant
distance from the slope breakpoint then coarser material does not as
easily reach the slope, limiting facies changes between topsets and
slope, and reducing the possibility of slope feature formation
(Posamentier & Vail 1988). This interpretation of the observations
is supported by the onshore stratigraphy from southeastern Britain,
which suggests that the basal Quaternary was deposited in a
shallow-marine environment (McMillan et al. 2005; Rose 2009),

Fig. 12. Reconstructed paleo-environmental map of 2.58 Ma North Sea based on results of this study, Overeem et al. (2001), McMillan et al. (2005),
Busschers et al. (2007), Rose (2009) and Noorbergen et al. (2015). Large parts of the present-day North Sea would have been flooded under the highstand
conditions at the onset of the Quaternary, creating a very shallow shelf, but were otherwise terrestrial.
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and a peak in sea-level observed at 2.58 Ma in the global sea-level
curve (Miller et al. 2011), suggesting a flooding event at the onset of
the Quaternary. This flooding surface is observed in studies of
seismic stratigraphy in the Dutch sector southern North Sea at the
top of the MIS 103 interglacial, marked by a large transgression
within the seismic geomorphology and a marked shift in the
depocentre (Funnell 1996; Harding 2015). A significant flooding
event at the onset of the Quaternary created an extensive shallow
marine environment on the shelf (clinoform topset), possibly as
shallow as 20 m water depth, increasing sharply at the clinoform
breakpoint of the shelf prism into the elongate basin (Fig. 12).

Earliest Quaternary (2.58 – 2.35 Ma)

Observations of the earliest Quaternary package from structural and
seismic amplitude mapping, backstripping and calculations of
sedimentation rates show a different picture to conditions at the
Pliocene–Pleistocene boundary. During the earliest Quaternary, the
extent of the basin long axis was reduced by over 100 km, primarily
as a result of infill of the basin from the south and rapid northwards
progradation of clinoform packages (Fig. 10). This progradation is
highlighted in the sedimentation rates for this period, with the main
depocentre for the earliest Quaternary lying in the south of the basin
and low to no sedimentation in the north of the basin (Fig. 10). On
the NW slopes of the basin older, remnant, clinoform packages from
earlier Cenozoic depositional systems existed but were not active
during 2.35 – 2.58 Ma (Fig. 10). Backstripping calculations also
reflect the disparate sedimentation and infill of the basin, with the
basin occupying the present-day southern North Sea being almost
completely infilled by 2.35 Ma, leaving water depths of less than
50 m (Fig. 9i). In comparison, towards the northern end of the basin,
the clinoforms either do not change in height, or marginally increase
in height during the earliest Quaternary (Fig. 9iii and iv). Finally,
unlike the basal Quaternary horizon, throughout the 2.58 – 2.35 Ma
package, mass transport deposits, slope channels and fans are
present on the southern clinoform slope, although not on the
northern slopes (e.g. Fig. 11).

These observations fit with the general model of fluvial input
into the North Sea during the early Quaternary and late Cenozoic.
Evidence from the southern North Sea and from onshore NW
Europe indicates that the dominant river systems during this time
were the Baltic (Bijlsma 1981) and Rhine–Meuse (Busschers
et al. 2007) river systems, which fed into the North Sea from
Denmark, northern Germany and the Netherlands respectively
(Fig. 12). The two river systems drained large areas of northern
Europe during this time, including the Fennoscandian shield, the
Baltic platform and large areas of NW Europe from the Alps to
the present-day mouth of the Rhine (Overeem et al. 2001;
Busschers et al. 2007). This drainage pattern would cause the high
sedimentation rate in the south and the low sedimentation rate to
the north, as the southwards drainage pattern of the Fennoscandian
shield into the Baltic river systems bypasses the northern part of
the basin. This bypass of the northern basin during the earliest
Quaternary means that any correlation between the Norwegian and
North Sea depositional systems, such as that presented by Ottesen
et al. (2014), is difficult to test using the present-day distribution
of high-quality chronostratigraphic calibrations. The two depo-
centres could, in fact, indicate completely separate depositional
systems: one preserving solely the Scandinavian climate signal
from the western coast of Norway, which drained into the northern
North Sea, and the other the Northern European signal, or a mixed
signal, from eastern Norway draining into the Baltic river system,
routed through the southern clinoform set. Rapid northward
progradation during this part of the early Quaternary has been
noted in the southern North Sea previously, and has been linked
with climatic cooling and increased sediment supply owing to

glacial activity in the sediment source areas (Overeem et al. 2001;
Huuse 2002).

The disparate sedimentation rates between north and south are
highlighted in the backstripping results, which indicate that
sedimentation rate must have far outstripped the formation of
accommodation space by subsidence in the south of the basin during
the earliest Quaternary (Fig. 9). Subsidence owing to loading is a
continuous process, allowing far more sediment to be deposited in a
depocentre than the initial accommodation space, and in a basin
fully adjusted for isostasy it is not uncommon for up to three times
the initial accommodation to be accumulated (Sclater & Christie
1980; Allen & Allen 2013). In the southern end of the basin,
however, with an initial water depth of c. 300 m, only 350 m of
sediment accumulated to fill the earliest Pleistocene accommoda-
tion. This part of the basin fill is a direct continuation of the rapid
progradation that filled in the southeastern North Sea Basin during
the post-middle Miocene (Clausen et al. 1999; Harding 2015). It is
thus likely that flexural loading by the Pliocene clinoforms may
have already preloaded this part of the basin, thus limiting the
vertical isostatic component.

Additional to this the North Sea is noted to have been influenced
by large-scale ice sheets at various points during the Quaternary
(Graham et al. 2011, and references therein). Ice sheets are known to
have an impact on isostasy both through the loading of the ice sheet
itself (James&Bent 1994;Klemann&Wolf 1998;Davis et al. 1999;
James et al. 2000; Stewart et al. 2000) and the changes to
groundwater conditions affecting compaction of sediment
(Boulton & Dobbie 1993; Sættem et al. 1996; Piotrowski & Kraus
1997; O’Regan et al. 2010, 2016). The effects of changes to
groundwater drainage under a significant ice load can result in
strongly differential compaction. Over-consolidation of sediment is
common in glacially loaded regions, as the weight of the ice forces
dewatering and effective stress increases dramatically (Boulton &
Dobbie 1993; Sættem et al. 1996; Piotrowski & Kraus 1997;
O’Regan et al. 2010, 2016).However, restrictedmeltwater discharge
has been known to cause excess pore pressures and thus under-
consolidation of sediment, particularly in fast-moving ice (Boulton
& Dobbie 1993; Sættem et al. 1996; Piotrowski & Kraus 1997;
O’Regan et al. 2010, 2016). There are very limited data available on
howdeep the compaction effects of glacial loading can penetrate into
the substrate. Isostatic loading from an ice sheet is equally complex,
with vertical and horizontal stresses placed on the strata even well
beyond the extent of the ice sheet. Although modern postglacial
rebound models, constrained by field-based investigations, have
improved greatly over theyears they are reliant on knowing the extent
and thickness of the ice sheet in question (James & Bent 1994;
Klemann&Wolf 1998; Davis et al. 1999; James et al. 2000; Stewart
et al. 2000), for which the data are truly available only in the North
Sea for the last glacial maximum (Huuse & Lykke-Andersen 2000;
Graham et al. 2011). Additionally, modern reboundmodels may not
fully account for the cumulative effect of repeated glaciations, which
the North Sea is known to be subject to (Klemann & Wolf 1998;
Stewart et al. 2000).With a limited understanding of ice extents prior
to the last glacial maximum and lacking any direct measurements of
potential over- or under-consolidation the impact of glacial loading
on the Quaternary stratigraphy remains uncertain.

The presence of slope fan deposits and downslope channels on
the slopes of the southern clinoforms during the 2.58 – 2.35 Ma
package are typical of a shelf system in whichmaterial is transported
to the shelf break. Coarser material remains on the topsets, forming
a delta system, whereas finer sediment is carried down the slope by
strong downslope currents into the basin (Posamentier & Vail 1988;
Cartwright 1995; Mulder & Alexander 2001; Mulder et al. 2003).
The elongate U-shaped features seen incising into the basal
Quaternary in the central part of the basin are a particularly
notable example of this process, and are interpreted as troughs
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formed by strong downslope currents under the high influx of
sediment-laden water; that is, turbidites (Cartwright 1995; Lamb
et al. 2017). These observations fit with the interpretation of the
North Sea as a highly dynamic basin during the earliest Quaternary.

Implications

The mapping of the basal Quaternary surface and analysis of the
earliest Quaternary sedimentary package define an expanded mid-
latitude record of global climatic cooling. The onset of the
Quaternary saw much of the shallow shelf flooded; however, the
majority of deposition occured within the early Quaternary North
Sea Basin. Rapid sediment deposition during the earliest
Quaternary in the southern part of the basin caused both infill of
the basin and differential subsidence, reducing accommodation in
the south while maintaining accommodation towards the north,
driving the depocentre northwards. This north–south deposition
pattern allowed a significant thickness of Quaternary sediments to
build up, leading to a thick and laterally expanded sedimentary
succession of 1.2 km for the entire Quaternary and almost 600 m for
the earliest Quaternary across the entire North Sea Basin. By
correlating chronostratigraphic studies from the southern North Sea
into the central North Sea and mapping continuously in full three
dimensions this study provides a powerful chronostratigraphic
calibration for the early Quaternary. If this base-Quaternary surface
is combined with analysis of seismic geomorphology and drilling of
the marine toesets from the rapidly prograding southern clinoform
system, one of the most complete and detailed mid-latitude
paleoclimate records for the early Quaternary could be produced.

In addition to the interpretations of the paleo-environmental
record, the structural map of the basal Quaternary horizon can be
combined with backstripping calculations to create a proxy that
represents the pre-glacial paleobathymetry of the North Sea, which
is one of the more poorly defined boundary conditions in ice sheet
modelling (Peltier 1994). The Base Quaternary surface mapped here
at 50 × 50 m resolution across the entire Quaternary North Sea Basin
provides a uniform framework horizon that highlights the
diachroneity of some previous correlations based on seismic
facies or perceived stratal relations. The continuously mapped
surface should thus help constrain future assessments of shallow
geohazards and shallow gas resources in the North Sea Basin.

Conclusion

The basal Quaternary surface (2.58 Ma) has been mapped across the
central and southern North Sea through the integration of
chronostratigraphic studies with basin-wide 3D seismic data. The
surface defines a highly elongate Quaternary depocentre comprising
some 83 × 103 km3 of sediments deposited in an elongated semi-
enclosed deep marine basin with paleowater depths throughout the
early Quaternary of up to 300 ± 50 m. Based on facies analysis and
seismic geomorphological analysis it is suggested that the marine
basin was initially flooded at the onset of the Quaternary but during
the first 230 kyr was strongly influenced by a high sediment input
from Northern Europe. The high sediment input created a dynamic
and rapidly changing paleo-environment dominated by turbidites,
channels and fans as well as shelf-margin deltas. Under this high
sediment supply regime the basin shape changed dramatically
during the first 230 kyr of the Quaternary, leading to the near-infill
of the southern North Sea by 2.35 Ma. Estimates of sedimentation
rates suggest a maximum sedimentation rate of over 30 km3 ka−1 for
the earliest Quaternary. The map of the base Quaternary and the
early Pleistocene depocentre define a record of preserved
paleoclimate information reaching up to 1.2 km thickness, which
has implications for further study of the paleoclimate evolution of

the Plio-Pleistocene transition, shallow geohazard analysis and
resource assessments.
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