Skip to main content

Main menu

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Issue in progress
    • All issues
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Other member type access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of the Geological Society
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London
  • My alerts
  • Log in
  • My Cart
  • Follow gsl on Twitter
  • Visit gsl on Facebook
  • Visit gsl on Youtube
  • Visit gsl on Linkedin
Journal of the Geological Society

Advanced search

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Issue in progress
    • All issues
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Other member type access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit

Composite lava flows of Ordovician age in the English Lake District

P. M. ALLEN, D. C. COOPER and N. J. FORTEY
Journal of the Geological Society, 144, 945-960, 1 November 1987, https://doi.org/10.1144/gsjgs.144.6.0945
P. M. ALLEN
1 British Geological Survey, St. Just, 30 Pennsylvania Road, Exeter EX4 6BX, UK
  • Find this author on Google Scholar
  • Search for this author on this site
D. C. COOPER
2British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
  • Find this author on Google Scholar
  • Search for this author on this site
N. J. FORTEY
3British Geological Survey, 64 Gray's Inn Road, London WC1X8NG, UK
  • Find this author on Google Scholar
  • Search for this author on this site
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Three composite andesitic lava flows, within the Ordovician Borrowdale Volcanic Group, are described. They are 35-250 m thick and in their simplest form consist of a massive, flow-jointed andesite lower part and a flow-laminated to blocky basaltic andesite upper part with a zone of interlayering between them. One flow has a very thin, discontinuous, basal unit of xenolithic, flow-laminated basaltic andesite. The interlayered zone comprises layers and lenses of andesite, basaltic andesite and mixed rocks consisting of closely packed inclusions of pale coloured andesite in a chlorite-rich matrix. The rocks have undergone several stages of alteration: (a) deuteric alteration, including silicification associated with autobrecciation of the upper component and inter-magma reactions in the interlayered zone; (b) soda-metasomatism, preferentially of basaltic andesite; (c) metamorphism, attributed to the Lake District granite batholith, giving an actinolite-sericite assemblage; (d) regional metamorphism to give a chlorite-epidote-actinolite-sphene assemblage with rare prehnite and pumpellyite; (e) calcite veining. These alterations have modified the bulk chemistry of the rocks, but the concentrations of Al, P, Ti, V, Cr, Co, Ni, Ga, Y, Zr, Nb, La, Ce and Th are largely unaffected on the scale of a 2 kg sample. Using these elements the composition of the lavas compares with high-K orogenic andesites emplaced through continental crust. Each of the flows shows distinct chemical characteristics which may be explained by variations of phenocryst content or the assimilation of cognate xenoliths. Variations within flows can be explained by magma mixing and fractional crystallization of plagioclase, minor pyroxene, ilmenite and zircon. A mechanism for eruption is proposed in which a volatile-rich basic magma intruded de-gassed cooler, less dense andesite magma in a high level sub-volcanic chamber. The basic magma formed the lower layer in the chamber. On cooling and crystallization of plagioclase near the interface the volatile content of the residual basic liquid rose and the density decreased allowing the liquids to form an emulsion-like layer at the interface. This separated and rose into the andesite magma and the process was repeated to form an interlayered zone at the junction. Before mixing was complete the magma was erupted as a series of composite flows.

  • © Geological Society of London 1987

Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.

INDIVIDUALS

Log in using your username and password

– GSL fellows: log in with your Lyell username and password. (Please check your access entitlements at https://www.geolsoc.org.uk/fellowsaccess)
– Other users: log in with the username and password you created when you registered. Help for other users is at https://www.geolsoc.org.uk/lyellcollection_faqs
Forgot your username or password?

Purchase access

You may purchase access to this article for 24 hours and download the PDF within the access period. This will require you to create an account if you don't already have one. To download the PDF, click the 'Purchased Content' link in the receipt email.

LIBRARY USERS

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.
If you think you should have access, please contact your librarian or email sales@geolsoc.org.uk

LIBRARIANS

Administer your subscription.

CONTACT US

If you have any questions about the Lyell Collection publications website, please see the access help page or contact sales@geolsoc.org.uk

PreviousNext
Back to top

In this issue

Journal of the Geological Society: 144 (6)
Journal of the Geological Society
Volume 144, Issue 6
November 1987
  • Table of Contents
  • Index by author
Alerts
Sign In to Email Alerts with your Email Address
Citation tools

Composite lava flows of Ordovician age in the English Lake District

P. M. ALLEN, D. C. COOPER and N. J. FORTEY
Journal of the Geological Society, 144, 945-960, 1 November 1987, https://doi.org/10.1144/gsjgs.144.6.0945
P. M. ALLEN
1 British Geological Survey, St. Just, 30 Pennsylvania Road, Exeter EX4 6BX, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
D. C. COOPER
2British Geological Survey, Nicker Hill, Keyworth, Nottingham NG12 5GG, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
N. J. FORTEY
3British Geological Survey, 64 Gray's Inn Road, London WC1X8NG, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions
View PDF
Share

Composite lava flows of Ordovician age in the English Lake District

P. M. ALLEN, D. C. COOPER and N. J. FORTEY
Journal of the Geological Society, 144, 945-960, 1 November 1987, https://doi.org/10.1144/gsjgs.144.6.0945
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Email to

Thank you for sharing this Journal of the Geological Society article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Composite lava flows of Ordovician age in the English Lake District
(Your Name) has forwarded a page to you from Journal of the Geological Society
(Your Name) thought you would be interested in this article in Journal of the Geological Society.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Article
  • Info & Metrics
  • PDF

Related Articles

Similar Articles

Cited By...

More in this TOC Section

  • Repeated tabular injection of high-level alkaline granites in the eastern Bushveld, South Africa
  • Volcanic plume monitoring using atmospheric electric potential gradients
Show more: Article
  • Most read
  • Most cited
Loading
  • Geological Society of London Scientific Statement: what the geological record tells us about our present and future climate
  • Linking surface and subsurface volcanic stratigraphy in the Turkana Depression of the East African Rift system
  • Nature and significance of rift-related, near-surface fissure-fill networks in fractured carbonates below regional unconformities
  • Terrestrial stratigraphical division in the Quaternary and its correlation
  • The Shibantan Lagerstätte: insights into the Proterozoic–Phanerozoic transition
More...

Journal of the Geological Society

  • About the journal
  • Editorial Board
  • Submit a manuscript
  • Author information
  • Supplementary Publications
  • Subscribe
  • Pay per view
  • Alerts & RSS
  • Copyright & Permissions
  • Activate Online Subscription
  • Feedback
  • Help

Lyell Collection

  • About the Lyell Collection
  • Lyell Collection homepage
  • Collections
  • Open Access Collection
  • Open Access Policy
  • Lyell Collection access help
  • Recommend to your Library
  • Lyell Collection Sponsors
  • MARC records
  • Digital preservation
  • Developing countries
  • Geofacets
  • Manage your account
  • Cookies

The Geological Society

  • About the Society
  • Join the Society
  • Benefits for Members
  • Online Bookshop
  • Publishing policies
  • Awards, Grants & Bursaries
  • Education & Careers
  • Events
  • Geoscientist Online
  • Library & Information Services
  • Policy & Media
  • Society blog
  • Contact the Society

Published by The Geological Society of London, registered charity number 210161

Print ISSN 
0016-7649
Online ISSN 
2041-479X

Copyright © 2021 Geological Society of London