Skip to main content

Main menu

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Current issue
    • Past issues
    • Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • Access for GSL Fellows
    • Access for other member types
    • Press office
    • Help
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London

User menu

  • My alerts
  • Log in
  • Log out
  • My Cart

Search

  • Advanced search
Journal of the Geological Society
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London
  • My alerts
  • Log in
  • Log out
  • My Cart
  • Follow gsl on Twitter
  • Visit gsl on Facebook
  • Visit gsl on Youtube
  • Visit gsl on Linkedin
Journal of the Geological Society

Advanced search

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Current issue
    • Past issues
    • Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • Access for GSL Fellows
    • Access for other member types
    • Press office
    • Help
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit

The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front

M. J. RUSSELL and A. J. HALL
Journal of the Geological Society, 154, 377-402, 1 May 1997, https://doi.org/10.1144/gsjgs.154.3.0377
M. J. RUSSELL
Department of Geology and Applied Geology, University of Glasgow, Glasgow G12 8QQ, UK
  • Find this author on Google Scholar
  • Search for this author on this site
A. J. HALL
Department of Geology and Applied Geology, University of Glasgow, Glasgow G12 8QQ, UK
  • Find this author on Google Scholar
  • Search for this author on this site
PreviousNext
  • Article
  • Info & Metrics
  • PDF
Loading

Abstract

Here we argue that life emerged on Earth from a redox and pH front at c. 4.2 Ga. This front occurred where hot (c. 150°C), extremely reduced, alkaline, bisulphide-bearing, submarine seepage waters interfaced with the acid, warm (c. 90°C), iron-bearing Hadean ocean. The low pH of the ocean was imparted by the ten bars of CO2 considered to dominate the Hadean atmosphere/hydrosphere. Disequilibrium between the two solutions was maintained by the spontaneous precipitation of a colloidal FeS membrane. Iron monosulphide bubbles comprising this membrane were inflated by the hydrothermal solution upon sulphide mounds at the seepage sites. Our hypothesis is that the FeS membrane, laced with nickel, acted as a semipermeable catalytic boundary between the two fluids, encouraging synthesis of organic anions by hydrogenation and carboxylation of hydrothermal organic primers. The ocean provided carbonate, phosphate, iron, nickel and protons; the hydrothermal solution was the source of ammonia, acetate, HS −, H2 and tungsten, as well as minor concentrations of organic sulphides and perhaps cyanide and acetaldehyde. The mean redox potential (ΔEh) across the membrane, with the energy to drive synthesis, would have approximated to 300 millivolts. The generation of organic anions would have led to an increase in osmotic pressure within the FeS bubbles. Thus osmotic pressure could take over from hydraulic pressure as the driving force for distension, budding and reproduction of the bubbles.

Condensation of the organic molecules to polymers, particularly organic sulphides, was driven by pyrophosphate hydrolysis. Regeneration of pyrophosphate from the monophosphate in the membrane was facilitated by protons contributed from the Hadean ocean. This was the first use by a metabolizing system of protonmotive force (driven by natural ApH) which also would have amounted to c. 300 millivolts. Protonmotive force is the universal energy transduction mechanism of life. Taken together with the redox potential across the membrane, the total electrochemical and chemical energy available for protometabolism amounted to a continuous supply at more than half a volt.

The role of the iron sulphide membrane in keeping the two solutions separated was appropriated by the newly synthesized organic sulphide polymers. This organic take-over of the membrane material led to the miniaturization of the metabolizing system. Information systems to govern replication could have developed penecontemporaneously in this same milieu. But iron, sulphur and phosphate, inorganic components of earliest life, continued to be involved in metabolism.

  • greigite
  • hydrothermal conditions
  • iron sulphides
  • mackinawite
  • life origin
  • Eh
  • © Geological Society of London 1997

References

    1. Abbot D.H.,
    2. Hoffman S.E.
    (1984) Archaean plate ectonics revisited 1. heat flow, spreading rate, and the age of subducting oceanic lithosphere and their effects on the origin and evolution of continents Tectonics 3:429–448.
    OpenUrlCrossRefWeb of Science
    1. Adams M.W.W.
    (1992) Novel iron-sulfur centers in metalloenzymes and redox proteins from extremely thermophilic bacteria. Advances in Organic Chemistry 38:341–396.
    OpenUrl
    1. Anderson R.B.,
    2. Langseth M.G.,
    3. Sclater J.G.
    (1977) The mechanisms of heat transfer through the floor of the Indian Ocean. Journal of Geophysical Research 82:3391–409.
    OpenUrlCrossRef
    1. Anthony C.
    (1988) Bacterial Energy Transduction (Academic Press, London).
    1. Aculus R.J.,
    2. Delano J.W.
    (1980) Implications for the primitive atmosphere of the oxidation state of Earth's upper mantle. Nature 288:72–74.
    OpenUrlCrossRef
    1. Arrhenius G.
    (1987) The first 800 million years: Environmental models for the early Earth. Earth, Moon and Planets 37:187–199.
    OpenUrlCrossRefPubMed
    1. Arrhenius G.,
    2. Gedulin B.,
    3. Mojzsis S.
    (1993) in Chemical Evolution: Origin of Life, Phosphate in models for chemical evolution, eds Ponnamperuma C., Chela-Flores J. (A. Deepak Publishing), pp 25–50.
  1. Atlas, R.M. 1989. Microbiology: Fundamentals and Applications. 2nd Edition, Macmillan.
    1. Bachmann P.A.,
    2. Walde P.,
    3. Luisi P.L.,
    4. Lang J.
    (1991) Self-replicating micelles: Aqueous micelles and enzymetically driven reactions in reverse micelles. Journal of the American Chemical Society 113:8204–8209.
    OpenUrlCrossRefWeb of Science
    1. Baltscheffsky M.,
    2. Baltscheffsky H.
    (1992) in Molecular Mechanisms in Bioenergetics, Inorganic pyrophosphate and inorganic pyrophosphatases, ed Ernster L. pp 331–348.
    1. Banks D.
    (1985) A fossil hydrothermal worm assemblage from the Tynagh lead-zinc deposit in Ireland. Nature 313:128–131.
    OpenUrlCrossRef
    1. Baross J.A.,
    2. Hoffman S.E.
    (1985) Submarine hydrothermal vents and associated gradient environments as sites for the origin and evolution of life. Origins of Life and Evolution of the Biosphere 15:327–345.
    OpenUrlCrossRefWeb of Science
    1. Bedard R.L.,
    2. Wilson S.T.,
    3. Vail L.D.,
    4. Bennett J.M.,
    5. Flanigen E. M.
    (1989) in Zeolites: Facts, Figures, Future, The next generation: Synthesis, characterization and structure of metal-sulfide-based microporous solids, eds Jacobs P.A., Van Santen R.A. (Elsevier Scientific Publishers B.V, Amsterdam), pp 375–387.
    1. Benner S.A.,
    2. Ellington A.D.,
    3. Tauer A.
    (1989) Modern metabolism as a palimpsest of the RNA world. Proceedings of the National Academy of Science, USA 86:7054–7058.
    OpenUrlAbstract/FREE Full Text
    1. Berg J.M.,
    2. Holm R. H.
    (1982) in Iron-sulfur proteins, Structures and reactions of iron-sulfur protein clusters and their synthetic analogues, ed Spmo T. G. (Wiley-Interscience), pp 1–66.
    1. Berger E.A.
    (1973) Different mechanisms of energy coupling for active transport of proline and glutamine in Escherichia coli. Proceedings of the National Academy of Science, USA 70:1514–1518.
    OpenUrlAbstract/FREE Full Text
    1. Bernal J.D.
    (1951) The Physical Basis of Life (Routledge and Kegan Paul, London).
    1. Bernal J. D.
    (1960) in Aspects of the Origin of Life, The problem of stages in biopoesis, ed Florkin M. (Pergamon Press, New York), pp 30–45.
    1. Bernard A.,
    2. Symonds R.B.
    (1989) The significance of siderite in the sediments from Lake Nyos, Cameroon. Journal of Volcanic and Geothermal Research 39:187–194.
    OpenUrlCrossRef
    1. Bertini I.,
    2. Gray H.B.,
    3. Lippard S.J.,
    4. Valentine J.S.
    (1994) Bioinorganic Chemistry (University Science Books, Mill Valley, California).
  2. Bethke, C. 1992a. The Geochemist's Workbench (code). The Board of Trustees of the University of Illinois.
  3. Bethke, C. 1992b. The Geochemist's Workbench: A Users Guide to Rxn, Tact, React and Gtplot. University of Illinois.
    1. Bethke C.
    (1996) Geochemical Reaction Modeling (Oxford University Press).
    1. Bhatnagar L.,
    2. Jain M.K.,
    3. Zeikus J. G.
    (1991) in Variation in Autotrophic Life, Methanogenic Bacteria, eds Sfuvely J.M., Barton L.L. (Academic Press), pp 251–270.
    1. BIOTOL
    (1992) Biotechnology by Open Learning (Butterworth-Heinemann, Oxford).
    1. Bonomi F.,
    2. Werth M.T.,
    3. Kurtz D.M.
    (1985) Assembly of FenSn(SR)2− (n = 2,4) in aqueous media from iron salts, thiols and sulfur, sulfide, thiosulfide plus rhodonase. Inorganic Chemistry 24:4331–4335.
    OpenUrlCrossRefWeb of Science
    1. Boyce A.J.,
    2. Coleman M.L.,
    3. Russell M.J.
    (1983) Formation of fossil hydrothermal chimneys and mounds from Silvermines, Ireland. Nature 306:545–550.
    OpenUrlCrossRefWeb of Science
    1. Boyle R.W.,
    2. Alexander W.M.,
    3. Aslin G.E.M.
    (1975) Some observations on the solubility of gold, 75–24, Geological Survey of Canada Paper.
    1. Braterman P.S.,
    2. Cairns-Smith A.G.,
    3. Sloper R.A.
    (1983) Photo-oxidation of hydrated Fe2+—significance for banded iron formations. Nature 303:163–164.
    OpenUrlCrossRefWeb of Science
    1. Braterman P.S.,
    2. Cairns-Smith A.G.,
    3. Sloper R.A.,
    4. Truscott T.G.,
    5. Craw M.
    (1984) Photo-oxidation of iron(II) in water between pH 7.5 and 4.0. Journal of the Chemical Society, Dalton Transactions, 1441–1445.
    1. Brenner S.
    (1988) The molecular evolution of genes and proteins: A tale of two serines. Nature 334:528–530.
    OpenUrlCrossRefPubMedWeb of Science
    1. Bresler S.E.,
    2. Glikina M.V.,
    3. Konikov A.P.,
    4. Selezneva N.A.,
    5. Phinogenov P. A.
    (1949) [Synthesis of protein and peptide under pressure]. Izvestiya Akademii Nauk. S.S.S.R 13:392–406, [in Russian].Ser. Fiz.
    OpenUrl
    1. Brock T.D.,
    2. Madigan M.T.,
    3. Martinko J.M.,
    4. Parker J.
    (1994) Biology of Microorganisms (Prentice Hall International Inc), 7th Edition.
    1. Buchanan B.B.,
    2. Arnon D.I.
    (1990) A reverse Krebs cycle in photosynthesis: Concensus at last. Photosynthesis Research 24:47–53.
    OpenUrlCrossRefPubMedWeb of Science
    1. Buchanan BBBB,
    2. Matsubara H.,
    3. Evans M.C.W.
    (1969) Ferredoxin from the photosynthetic bacterium, Chlorobium thiosulphatophilumA link to ferredoxins from non-photosynthetic bacteria. Biochimica et Biophysica Acta 189:46–53.
    OpenUrlPubMed
    1. Burne R.V.,
    2. Moore L.S.
    (1987) Microbialites: Organosedimentary deposits of benthic microbial communities. Palaios 2:241–254.
    OpenUrlAbstract/FREE Full Text
    1. Cairns-Smith A.G.
    (1982) Genetic Takeover and the Mineral Origins of Life (Cambridge University Press).
    1. Cammack R.
    (1988) Nickel in metalloproteins. Advances in Organic Chemistry 32:297–333.
    OpenUrl
    1. Cammack R.
    (1995) Splitting molecular hydrogen. Nature 373:556–557.
    OpenUrlCrossRefPubMed
    1. Cammack R.
    (1996) in Origin and Evolution of Biological Energy Conversion, Iron and sulfur in the origin and evolution of biological energy conversion systems, ed Baltscheffsky H. (VCH Publishers, Deerfield Beach Florida), pp 43–69.
    1. Canuto V.M.,
    2. Levine J.S.,
    3. Augustsson T.R.,
    4. Imhoff C.L.
    (1982) UV radiation from the young Sun and oxygen and ozone levels in the prebiological palaeoatmosphere. Nature 296:816–820.
    OpenUrlCrossRefWeb of Science
    1. Chan M.K.,
    2. Makund S.,
    3. Kletzin A.,
    4. Adams M.W.W.,
    5. Rees D.C.
    (1995) Structure of a hyperthermophilic tungsopterin enzyme, aldehyde ferredoxin oxidoreductase. Science 267:1463–1469.
    OpenUrlAbstract/FREE Full Text
    1. Chivas A.R.,
    2. Barnes I.,
    3. Evans W.C.,
    4. Lupton J.E.,
    5. Stone J.O.
    (1987) Liquid carbon dioxide of magmatic origin and its role in volcanic eruptions. Nature 326:587–589.
    OpenUrlCrossRefWeb of Science
    1. Christou G.,
    2. Garner C.D.
    (1980) Synthesis and proton magnetic resonance properties of Fe3MS4 (M = Mo or W) cubane-like cluster dimers. Journal of the Chemical Society, Dalton Transactions, 2354–2362.
    1. Chyba C.F.
    (1990) Impact delivery and erosion of planetary oceans. Nature 343:129–132.
    OpenUrlCrossRef
    1. Chyba C.F.,
    2. Sagan C.
    (1992) Endogenous production, exogenous delivery and impact-shock synthesis of organic molecules: An inventory for the origins of life. Nature 355:125–131.
    OpenUrlCrossRefPubMedWeb of Science
    1. Chyba C.F.,
    2. Owen T.C.,
    3. Ip W.-H.
    (1995) in Hazards Due to Comets & Asteroids, Impact delivery of volatiles and organic molecules to Earth, ed Gehrels T. (University of Arizona, Tucson), pp 9–58.
    1. Coatman R.D.,
    2. Thomas N.L.,
    3. Double D.D.
    (1980) Studies of the growth of ‘‘silicate gardens’’ and related phenomena. Journal of Materials Science 15:2017–2026.
    OpenUrlCrossRefWeb of Science
    1. Cole W.J.,
    2. Kaschke M.,
    3. Sherringham J.A.,
    4. Curry G.B.,
    5. Turner D.,
    6. Russell M.J.
    (1994) Can amino acids be synthesised by H2S in anoxic lakes? Marine Chemistry 45:243–256.
    OpenUrlCrossRefWeb of Science
    1. Copeland J.J.
    (1936) Yellowstone thermal myxophyceae. Annual New York Academy of Science 36:1–232.
    OpenUrl
    1. Corliss J.B.
    (1986a) On the role of submarine hot springs on the Archaean Earth: The chemistry of sea water, degassing, and the oxidation/reduction balance. Origins of Life and Evolution of the Biosphere 19:192–193.
    OpenUrl
    1. Corliss J.B.
    (1986b) On the creation of living cells in submarine hot spring flow reactors: Attractors and bifurcations in the natural hierarchy dissipative systems. Origins of Life and Evolution of the Biosphere 19:381–382.
    OpenUrl
    1. Corliss J.B.,
    2. Baross J.A.,
    3. Hoffman S. E.
    (1981) An hypothesis concerning the relationship between submarine hot springs and the origin of life on Earth. Oceanololica Acta, 59–69, No. Sp.
    1. Coveney R.M.,
    2. Goebel E.D.,
    3. Zeller E.J.,
    4. Dreschhoff G.A.M.,
    5. Angino E.E.
    (1987) Serpentinization and the origin of hydrogen gas in Kansas. Bulletin of the American Association of Petroleum Geologists 71:39–48.
    OpenUrlAbstract
    1. Cragg B.A.,
    2. Parkes R.J.
    (1994) Bacterial profiles in hydrothermally active deep sediment layers from Middle Valley (NE Pacific), sites 857 and 858. in Proceedings of the Ocean Drilling Program, Scientific Results, eds Mottl M.J., Davis E.E., Fisher A.T., Slack J.F. 139:509–516.
    OpenUrl
    1. Cronin J.R.,
    2. Pizzarello S.,
    3. Cruikshank D. P.
    (1988) in Meteorites and the Early Solar System, Organic matter in carbonaceous chondrites, planetary satellites, asteroids and comets, eds Kerridge J.F., Matthews M.D. (University of Arizona Press, Tucson), pp 819–857.
    1. Cuebas D.,
    2. Beckmann J.D.,
    3. Frerman F.E.,
    4. Schulz H.
    (1985) Mitochondrial metabolism of 3-mercaptoproprionic acid—chemical synthesis of 3-mercaptopropionyl coenzyme-A and some of its S-acyl derivatives. Journal of Biological Chemistry 260:7330–7336.
    OpenUrlAbstract/FREE Full Text
    1. Da Silva J.J.R.F.,
    2. Williams R.J.P.
    (1991) The Biological Chemistry of the Elements (Clarendon Press, Oxford).
    1. Daniel R.M.
    (1992) Modern life at high temperatures. Origins of Life and Evolution of the Biosphere 22:33–42.
    OpenUrlCrossRefWeb of Science
    1. Daniel R.M.,
    2. Danson M.J.
    (1995) Did primitive microorganisms use nonheme iron proteins in place of NAD/P? Journal of Molecular Evolution 40:559–563.
    OpenUrlCrossRefWeb of Science
    1. Danson M.J.,
    2. Hough D.W.,
    3. Lunt G.G.
    (1992) Archaebacteria: Biochemistry and Biotechnology (Portland Press Ltd, Colchester UK) Biochemical Society Symposium, 58.
    1. Darimont B.,
    2. Sterner R.
    (1994) Sequence, assembly and evolution of a primordial ferredoxin from Thermotoga maritima. The EMBO Journal 13:1772–1781.
    OpenUrlPubMedWeb of Science
    1. Darnell J.,
    2. Lodish H.,
    3. Baltimore D.
    (1986) Molecular Cell Biology (Scientific American Books Inc).
    1. Darwin F.
    , ed (1888) The Life and Letters of Charles Darwin (John Murray, London), Vol. 3.
    1. Deamer W.D.
    (1985) Boundary structures are formed by organic components of the Murchison meteorite. Nature 317:792–794.
    OpenUrlCrossRefWeb of Science
    1. Deamer W.D.
    (1986) Role of amphiphilic compounds in the evolution of membrane structure on the early Earth. Origins of Life and Evolution of the Biosphere 17:3–25.
    OpenUrlCrossRefWeb of Science
    1. de Duve C.
    (1991) Blueprint for a Cell: The Nature and Origin of Life (Neil Patterson Publishers, Burlington, North Carolina).
    1. De Duve C.
    (1997) in From Atoms to Mind. Frontiers in Biology, Origin of life: energy, eds Gilbert W., Tocchini-Valenttni G. (Instituto della Enciclopedia Italiana, Roma), 1.
    1. Degens E. T.
    (1979) in The Global Carbon Cycle, Primordial synthesis of organic matter, eds Bolin B., Degens E.T., Kempe S., Ketner P. (John Wiley, New York), pp 57–77.
    1. Deming J.W.,
    2. Baross J.A.
    (1993) Deep-sea smokers: Windows to a subsurface biosphere. Geochimica et Cosmochimica Acta 57:3219–3230.
    OpenUrlCrossRefPubMedWeb of Science
    1. Des Marais D. J.
    (1994) in Archean Crustal Evolution, The Archean atmosphere: Its components and fate, ed Condie K. C. (Elsevier, Amsterdam), pp 505–523.
    1. De Wit M.,
    2. Roering C.,
    3. Hart R.J.,
    4. Armstrong R.A.,
    5. de Ronde C.E.J.,
    6. Green R.W.E.,
    7. Tredoux M.,
    8. Peberdy E.,
    9. Hart R.A.
    (1992) Formation of Archaean continent. Nature 357:553–562.
    OpenUrlCrossRefWeb of Science
    1. Drews G.,
    2. Imhoff J. F.
    (1991) in Variation in Autotrophic Life, hototrophic purple bacteria, eds Shively J.M., Barton L.L. (Academic Press), pp 51–98.
    1. Dyson F.
    (1985) Origins of Life (Cambridge University Press).
    1. Eck R.V.,
    2. Dayhoff M.O.
    (1968) Evolution of the structure of ferredoxin based on living relics of primitive amino acid sequences. Science 152:363–366.
    OpenUrlCrossRef
    1. Evans H.T.
    (1974) in Handbook of Geochemistry II/5, Tungsten (Wolfram), ed Wedepohl K.H. (Springer-Verlag, Berlin), 74A, pp 1–3.
    OpenUrl
    1. Evans W.C.,
    2. White L.D.,
    3. Tuttle MX,
    4. Kling G.W.,
    5. Tanyileke G.,
    6. Michel R.L.
    (1994) Six years of change at Lake Nyos, Cameroon, yield clues to the past and cautions for the future. Geochemical Journal 28:139–162.
    OpenUrlWeb of Science
    1. Fallick A.E.,
    2. Ilich M.,
    3. Russell M.J.
    (1991) A stable isotope study of the magnesite deposits associated with the Alpine-type ultramafic rocks of Yugoslavia. Economic Geology 86:847–861.
    OpenUrlAbstract/FREE Full Text
    1. Fehn U.,
    2. Cathles L.M.
    (1986) The influence of plate movement on the evolution of hydrothermal convection cells in the oceanic crust. Tectonophysics 125:289–312.
    OpenUrlCrossRefWeb of Science
    1. Ferris J.P.
    (1992) Chemical markers of prebiotic chemistry in hydrothermal systems. Origins of Life and Evolution of the Biosphere 22:109–134.
    OpenUrlCrossRefPubMedWeb of Science
    1. Ferris J.P.,
    2. Orgel L.E.
    (1966) An unusual photochemical rearrangement in the synthesis of adenine. Journal of the American Chemical Society 88:1074.
    OpenUrl
    1. Fewson C.A.
    (1986) Archaebacteria. Biochemical Education 14:103–115.
    OpenUrlCrossRef
    1. Fiala G.,
    2. Stetter K.O.
    (1986) Pyrococcus furiosus sp nov represents a novel genus of marine heterotrophic archaebacteria growing optimally at 100°C. Archives of Microbiology 145:56–61.
    OpenUrlCrossRefWeb of Science
    1. Finklea S.,
    2. Cathey S.,
    3. Amma E. L.
    (1976) Investigation of the bonding mechanism in pyrite using the Mössbauer effect. Acta Crystallographica A32:529–537.
    OpenUrlCrossRefWeb of Science
    1. Fouquet Y.,
    2. Wafik A.,
    3. Cambon P.,
    4. Mevel C.,
    5. Meyer G.,
    6. Gente P.
    (1993) Tectonic setting and mineralogical and geochemical zonation in the Snake Pit sulfide deposit (Mid-Atlantic Ridge at 23°N). Economic Geology 88:2018–2036.
    OpenUrlAbstract/FREE Full Text
    1. Fox S.W.
    (1959) Biological overtones of the thermal theory of biochemical origins. Bulletin of the American Institute of Biological Science 9:20–23.
    OpenUrl
    1. Fox S.W.
    (1960) How did life begin? Science 132:200–208.
    OpenUrlFREE Full Text
    1. Fox S.W.
    (1995) Thermal synthesis of amino acids and the origin of life. Geochimica et Cosmochimica Acta 59:1213–1214.
    OpenUrlCrossRefPubMedWeb of Science
    1. Garrels R.M.,
    2. Christ C.L.
    (1965) Minerals, Solutions and Equilibria (Harper Row, New York).
    1. Gilbert W.
    (1986) The RNA World. Nature 319:618.
    OpenUrlCrossRef
    1. Gillet S. L.
    (1985) The rise and fall of the early reducing atmosphere. Astronomy 13:66–71, (July).
    OpenUrlPubMed
    1. Goldschmidt V.M.
    (1952) Geochemical aspects of the origin of complex organic molecules on the Earth, as precursors to life. New Biology 12:97–105.
    OpenUrl
    1. Griffith L.L.,
    2. Shock E.L.
    (1995) A geochemical model for the formation of hydrothermal carbonates on Mars. Nature 377:406–408.
    OpenUrlCrossRefPubMed
    1. Grotzinger J.P.,
    2. Kasttng J.F.
    (1993) New constraints on Precambrian ocean composition. Journal of Geology 101:235–243.
    OpenUrlCrossRefPubMedWeb of Science
    1. Habicht K.S.,
    2. Canfield D.E.
    (1996) Sulphur isotope fractionation in modern microbial mats and the evolution of the sulphur cycle. Nature 382:342–343.
    OpenUrlCrossRefWeb of Science
    1. Haldane J.B.S.
    (1929) The origin of life. Rationalist Annual 3:148–153.
    OpenUrl
    1. Hall A.J.
    (1986) Pyrite-pyrrhotine reactions in nature. Mineralogical Magazine 50:223–229.
    OpenUrlCrossRefWeb of Science
    1. Hall D.O.,
    2. Cammack R.,
    3. Rao K.K.
    (1971) Role for ferredoxins in the origin of life and biological evolution. Nature 233:136–138.
    OpenUrlCrossRefPubMed
    1. Hartman H.
    (1975) Speculations on the origin and evolution of metabolism. Journal of Molecular Evolution 4:359–370.
    OpenUrlCrossRefPubMedWeb of Science
    1. Heberle J.,
    2. Riesle J.,
    3. Thiedemann G.,
    4. Oesterhelt D.,
    5. Dencher N.A.
    (1994) Proton migration along the membrane surface and retarded surface bulk transfer. Nature 370:379–382.
    OpenUrlCrossRefPubMedWeb of Science
    1. Hedderich R.,
    2. Albracht S.P.J.,
    3. Linder D.,
    4. Koch J.,
    5. Thauer R.K.
    (1992) Isolation and characterization of polyferredoxin from Methanobacterium thermoautotrophicum: the mvhB gene product of the methylviologen-reducing hydrogenase operon. FEBS Letters 298:65–68.
    OpenUrlCrossRefPubMedWeb of Science
    1. Heinen W.,
    2. Lauwers A.M.
    (1996) Organic sulfur compounds resulting from the interaction of iron sulfide, hydrogen sulfide and carbon dioxide in an anaerobic aqueous environment. Origins of Life and Evolution of the Biosphere 26:131–150.
    OpenUrlCrossRefWeb of Science
    1. Hennet R.J.-C,
    2. Holm N.G.,
    3. Engel M.H.
    (1992) Abiotic synthesis of amino acids under hydrothermal conditions and the origin of life: A perpetual phenomenon? Naturwissenschaften 79:361–365.
    OpenUrlCrossRefPubMedWeb of Science
    1. Holm R.H.
    (1992) Trinuclear cuboidal and heterometallic cubane-type iron-sulfur clusters: New structural and reactivity themes in chemistry and biology. Advances in Organic Chemistry 38:1–71.
    OpenUrl
    1. Huber R.,
    2. Kurr M.,
    3. Jannasch H.W.,
    4. Stetter K. O.
    (1989) A novel group of abyssal methanogenic archaebacteria (Methanopyrus) growing at 110°C. Nature 342:833–834.
    OpenUrlCrossRefWeb of Science
    1. Hunten D.M.
    (1993) Atmospheric evolution of the terrestrial planets. Science 259:915–920.
    OpenUrlCrossRefWeb of Science
    1. Janecky D.R.,
    2. Seyfried W.E.
    (1986) Hydrothermal serpentinization of peridotite within the ocean crust: Experimental investigations of mineralogy and major element chemistry. Geochimica et Cosmochimica Acta 50:1357–1378.
    OpenUrlCrossRefWeb of Science
    1. Jannasch H.W.,
    2. Huber R.,
    3. Belkin S.,
    4. Stetter K.O.
    (1988) Thermotoga neapolitana sp nov of the extremely thermophilic eubacterial genus. Thermotoga Archives of Microbiology 150:103–104.
    OpenUrlCrossRef
    1. Jones C. W.
    (1988) in Bacterial Energy Transduction, Membrane-associated energy conservation, ed Anthony C. (Academic Press, London), pp 1–82.
    1. Kaschke M.,
    2. Russell M.J.,
    3. Cole J.W.
    (1994) [FeS/FeS2] A redox system for the origin of life. Origins of Life and Evolution of the Biosphere 24:43–56.
    OpenUrlCrossRefPubMedWeb of Science
    1. Kasttng J.F.,
    2. Ackerman T.P.
    (1986) Climatic consequences of very high carbon dioxide levels in the Earth's early atmosphere. Science 234:1383–1385.
    OpenUrlAbstract/FREE Full Text
    1. Kasttng J.F.,
    2. Eggler D.H.,
    3. Raeburn S.P.
    (1993) Mantle redox evolution and the oxidation state of the Archean atmosphere. Journal of Geology 101:245–257.
    OpenUrlCrossRefPubMedWeb of Science
    1. Kauffman S.A.
    (1993) Origins of Order: Self Organization and Selection in Evolution (Oxford University Press).
    1. Kell A.,
    2. Glasser R.W.
    (1993) On the mechanical and dynamic properties of plant cell membranes: Their role in growth, direct gene transfer and protoplast fusion. Journal of Theoretical Biology 160:41–62.
    OpenUrlCrossRefWeb of Science
    1. Kelley D. S.
    (1996) Methane-rich fluids in the oceanic crust. Journal of Geophysical Research 101:B2, 2943–2962.
    OpenUrl
    1. Kempe S.,
    2. Kazmierczak J.
    (1994) The role of alkalinity in the evolution of ocean chemistry, organization of living systems, and biocalcification processes. Bulletin de l’lnstitut Océanographique, Monaco, numero spécial 13:61–117.
    OpenUrl
    1. Kmoto T.,
    2. Fujinaga T.
    (1988) Non-biotic synthesis of cellular organic polymers in the presence of hydrogen sulphide. Chemistry Express 312:123–126.
    OpenUrl
    1. Kmoto T.,
    2. Fujinaga T.
    (1990) Non-biotic synthesis of organic polymers in H2S-rich sea-floor. A possible reaction for the origin of life Marine Chemistry 30:179–192.
    OpenUrl
    1. Kletzin A.,
    2. Adams M.W.W.
    (1996) Tungsten in biological systems. FEMS Microbiology Reviews 18:5–63.
    OpenUrlCrossRefPubMedWeb of Science
    1. Kling G.W.,
    2. Tuttle M.L.,
    3. Evans W.C.
    (1989) The evolution of thermal structure and water chemistry in Lake Nyos. Journal of Volcanology and Geothermal Research 39:151–165.
    OpenUrlCrossRefWeb of Science
    1. Koski R.A.,
    2. Jonasson I.R.,
    3. Kadko D.C.,
    4. Smith V.K.,
    5. Wong F.L.
    (1994) Compositions, growth mechanisms, and temporal relations of hydrother-mal sulfide-sulfate-silica chimneys at the northern Cleft segment, Juan de Fuca Ridge. Journal of Geophysical Research 99B:4813–4832.
    OpenUrlCrossRef
    1. Kotyk A.
    (1989) in Intracellular pH and its measurement, pH in biological systems, eds Kotyk A., Slavik J. (CRC Press, Inc, Boca Raton, Florida), pp 15–28.
    1. Kouvo O.,
    2. Vuorelainen Y.,
    3. Long J.V.P.
    (1963) A tetragonal iron sulfide. American Mineralogist 48:511–524.
    OpenUrlWeb of Science
    1. Krishnarao J.S.R.
    (1964) Native nickel-iron alloy, its mode of occurrence, distribution and origin. Economic Geology 59:443–448.
    OpenUrlAbstract/FREE Full Text
    1. Krupp R.E.
    (1994) Phase relations and phase transformations between the low-temperature iron sulfides mackinawite, greigite, and smythite. European Journal of Mineralogy 6:265–278.
    OpenUrlAbstract/FREE Full Text
    1. Krupp R.E.,
    2. Oberthur Th,
    3. Hirdes W.
    (1994) Composition of the early Precambrian atmosphere and hydrosphere, thermodynamic constraints from mineral deposits. Mineralogical Magazine 58A:499–500.
    OpenUrl
    1. Kusakabe M.,
    2. Ohsumi T.,
    3. Aramaki S.
    (1989) The Lake Nyos gas disaster: Chemical and isotopic evidence in waters and dissolved gases from the three Cameroonian crater lakes, Nyos, Monoun and Wum. Journal of Volcanic and Geothermal Research 39:167–185.
    OpenUrlCrossRef
  4. Lancet, D., Glusman, G., Segré, D., Kedem, O. & Pilpel, Y. 1996. Self replication and chemical selection in primordial mutually catalytic steps. International Society for the Study of the Origin of Life, 11th International Conference on the Origin of Life, Orléans. Abstracts, c3.5, p. 50.
    1. Lee D.H.,
    2. Granja J.R.,
    3. Martinez J.A.,
    4. Severin K.,
    5. Ghadiri M.R.
    (1996) A self-replicating peptide. Nature 382:525–528.
    OpenUrlCrossRefPubMedWeb of Science
    1. Leja J.
    (1982) Surface Chemistry of Froth Flotation (Plenum Press, New York).
    1. Lennie A.R.,
    2. Redfern S.A.T.,
    3. Schofield P.F.,
    4. Vaughan D.J.
    (1995) Synthesis and Rietveld crystal structure refinement of mackinawite, tetragonal FeS. Mineralogical Magazine 59:677–683.
    OpenUrlAbstract
    1. Lipmann F.
    (1941) Metabolic generation and utilization of phosphate bond energy. Advances in Enzymology 1:99–162.
    OpenUrlCrossRef
    1. Macleod G.,
    2. McKeown C.,
    3. Hall A.J.,
    4. Russell M.J.
    (1994) Hydrothermal and oceanic pH conditions of possible relevance to the origin of life. Origins of Life and Evolution of the Biosphere 23:19–41.
    OpenUrl
    1. McFadden B.A.,
    2. Shively J. M.
    (1991) in Variation in Autotrophic Life, Bacterial assimilation of carbon dioxide by the Calvin cycle, eds Shively J.M., Barton L.L. (Academic Press), pp 25–50.
    1. Maher K.A.,
    2. Stevenson D.J.
    (1988) Impact frustration of the origin of life. Nature 331:612–614.
    OpenUrlCrossRefPubMedWeb of Science
    1. Marshall W.L.
    (1994) Hydrothermal synthesis of amino acids. Geochimica et Cosmochimica Acta 58:2099–2106.
    OpenUrlCrossRefWeb of Science
    1. Matthews C.
    (1992) in Environmental Evolution: Effects of the Origin and Evolution of Life on Planet Earth, Origin of life: Polymers before monomers? eds Margulis L., Olendzenski L. (MIT Press), pp 29–38.
    1. Melosh H.J.
    (1989) Impact Cratering: A Geologic Process (Oxford University Press).
    1. Miller S.L.
    (1953) A production of amino acids under possible primitive Earth conditions. Science 117:528–529.
    OpenUrlFREE Full Text
    1. Mitchell P.
    (1961) Coupling of phosphorylation to electron and hydrogen transfer by a chemiosmotic mechanism. Nature 191:144–148.
    OpenUrlCrossRefPubMedWeb of Science
    1. Mitchell P.
    (1979) Keilin's respiratory chain concept and its chemiosmotic consequences. Science 206:1148–1159.
    OpenUrlFREE Full Text
    1. Mohamad D.B.,
    2. Mackenzie A.B.,
    3. Stephens W.E.,
    4. Russell M. J.
    (1992) Exploration methods for nuclear waste repositories or mineral deposits—from source to sink, where's the front? Transactions of the Institution of Mining and Metallurgy (Section B: Applied earth science) 101:B1, 39–146.
    OpenUrl
    1. Morse J.W.,
    2. Arakaki T.
    (1993) Adsorption and coprecipitation of divalent metals with mackinawite (FeS). Geochimica et Cosmochimica Acta 57:3635–3640.
    OpenUrlCrossRefWeb of Science
    1. Mottl M.J.
    (1992) Pore waters from serpentinite seamounts in the Mariana and Izu-Bonin Forearcs, Leg 125: Evidence for volatiles in the subducting slab. in Proceedings of the Ocean Drilling Program, Scientific Results, eds Fryer P., Coleman P., Pearce J.A., Stokking L.B. 125:373–385.
    OpenUrl
    1. Mueller A.G.
    (1991) The Savage Lode magnesian skarn in the Marvel Loch gold-silver mine, Southern Cross greenstone belt, Western Australia Part 1: Structural setting, petrography, and geochemistry Canadian Journal of Earth Sciences 28:659–685.
    OpenUrlAbstract
    1. Müller A.,
    2. Schladerbeck N.
    (1985) Systematik der Bildung von Elektronentransfer-clusterzentrum {FenSn}m+ mit Relevanz zur Evolution der Ferredoxine. Chimia 39:23–24.
    OpenUrlWeb of Science
    1. Muller A.W.J.
    (1985) Thermosynthesis by biomembranes: Energy gain from cyclic temperature changes. Journal of Theoretical Biology 115:429–453.
    OpenUrlCrossRefPubMedWeb of Science
    1. Muller A.W.J.
    (1995) Were the first organisms heat engines? A new model for biogenesis and the early evolution of biological energy conversion Progress in Biophysics and Molecular Biology 63:193–231.
    OpenUrlCrossRefPubMedWeb of Science
    1. Mullis K.B.,
    2. Faloona F.A.
    (1987) Specific synthesis of DNA in vitro via a polymerase-catalysed chain reaction. Methods in Enzymology 155:335–350.
    OpenUrlCrossRefPubMedWeb of Science
    1. Neal C.,
    2. Stanger G.
    (1984) Calcium and magnesium hydroxide precipitation from alkaline groundwater in Oman, and their significance to the process of serpentinization. Mineralogical Magazine 48:237–241.
    OpenUrlCrossRefWeb of Science
    1. Nekrasov I.Ya.,
    2. Konyushok A. A.
    (1982) [The physicochemical conditions of tungstenite formation]. Mineralogicheskii Zhurnal 4:33–40, [in Russian].
    OpenUrl
    1. Nielsen P.E.
    (1993) Peptide nucleic acid (PNA): A model structure for the primordial genetic material? Origins of Life and Evolution of the Biosphere 23:323–327.
    OpenUrlCrossRefPubMedWeb of Science
    1. Oberholzer T.,
    2. Albizio M.,
    3. Luisi P.L.
    (1995) Polymerase chain reaction in liposomes. Chemistry and Biology 2:677–682.
    OpenUrlCrossRefPubMedWeb of Science
    1. Oparin A.I.
    (1938) The Origin of Life (Dover, New York).
    1. Oparin A.I.
    (1957) The Origin of Life on Earth (Oliver and Boyd, Edinburgh).
    1. Oparin A.I.,
    2. Evreinova T.N.,
    3. Larionova T.I.,
    4. Davidova I. M.
    (1962) [Synthesis and disintegration of starch in coacervate drops]. Doklady Akademii Nauk, SSSR 143:980–983, [in Russian].
    OpenUrl
    1. Orgel L.E.,
    2. Crick F.H.C.
    (1993) Anticipating an RNA world, some past speculations on the origin of life: Where are they today? Federation Proceedings of the Federation of the American Societies for Experimental Biology 7:238–239.
    OpenUrl
    1. Oró J.
    (1961) Comets and the formation of the biochemical compounds on the primitive Earth. Nature 190:389–390.
    OpenUrlCrossRefWeb of Science
    1. Oró J.,
    2. Kimball A.P.
    (1961) Synthesis of purines under possible primitive Earth conditions 1. Adenine from hydrogen cyanide Archives of Biochemistry and Biophysics 94:217–227.
    OpenUrlCrossRefPubMedWeb of Science
    1. Oró J.,
    2. Kimball A.P.
    (1962) Synthesis of purines under possible primitive Earth conditions II. Purine intermediates from hydrogen cyanide Archives of Biochemistry and Biophysics 96:293–313.
    OpenUrlCrossRefPubMedWeb of Science
    1. Osborn H.F.
    (1917) The Origin and Evolution of Life: On the Theory of Action, Reaction and Interaction of Energy (Charles Scribner's Sons, New York).
    1. Owen T.,
    2. Bar-Nun A.,
    3. Keinfel I.
    (1992) Possible cometary origin of heavy gases in the atmospheres of Venus, Earth and Mars. Nature 358:43–46.
    OpenUrlCrossRefPubMedWeb of Science
    1. Patchett P.J.
    (1996) Scum of the Earth after all. Nature 382:758–759.
    OpenUrlCrossRef
    1. Phillips G.N.,
    2. Groves D.I.
    (1983) The nature of Archaean gold fluids as deduced from gold deposits in Western Australia. Geological Society of Australia Journal 30:25–39.
    OpenUrlCrossRefWeb of Science
    1. Phillips G.N.,
    2. Groves D.I.,
    3. Martyn J.E.
    (1984) An epigenetic origin for Archaean banded iron-formation-hosted gold deposits. Economic Geology 79:162–171.
    OpenUrlAbstract/FREE Full Text
    1. Pineau F.,
    2. Javoy M.,
    3. Bottinga Y.
    (1976) 13C/12C ratios of rocks and inclusions in popping rocks of the Mid-Atlantic Ridge and their bearing on the problem of isotopic composition of deep-seated carbon. Earth and Planetary Science Letters 29:413–421.
    OpenUrlCrossRefWeb of Science
    1. Pinto J.P.,
    2. Gladstone G.R.,
    3. Yung Y.K.
    (1980) Photochemical production of formaldehyde in Earth's primitive atmosphere. Science 210:183–185.
    OpenUrlAbstract/FREE Full Text
    1. Pollack J. B.
    (1990) in The New Solar System, Atmospheres of the terrestrial planets, eds Beatty J.K., Chaikin A. (Cambridge University Press), pp 91–106.
  5. Prescott, L.M., Harley, J.P. & Klein, D.A. 1993. Microbiology. 2nd Edition. Wm. C. Brown Communications Inc.
    1. Prigogine I.,
    2. Stengers I.
    (1984) Order Out of Chaos (Heinemann, London).
    1. Pringle J.W.S.
    (1953) Symposia of the Society for Experimental Biology, Number VII, Evolution, The origin of life (Cambridge University Press), pp 1–21.
    1. Reeve J.N.,
    2. Beckler G.S.,
    3. Cram D.S.,
    4. Hamilton P.T.,
    5. Brown J.W.,
    6. Krzycki J.A.,
    7. Kolodziej A.F.,
    8. Alex L.,
    9. Orme-Johnson W.H.,
    10. Walsh C.T.
    (1989) A hydrogenase-linked gene in Methanobacterium thermoautotrophicum strain ΔH encodes a polyferredoxin. Proceedings of the National Academy of Science USA 86:3031–3035.
    OpenUrlAbstract/FREE Full Text
    1. Rickard D.,
    2. Knott R.,
    3. Duckworth R.,
    4. Murton B.
    (1994) Organ pipes, beehive diffusers and chimneys at the Broken Spur hydrothermal sulphide deposits, 29°N MAR. Mineralogical Magazine 58:774–775.
    OpenUrl
    1. Rosing M.T.,
    2. Rose N.M.,
    3. Bridgwater D.,
    4. Thomsen H.S.
    (1996) Earliest part of Earth's stratigraphic record: A reappraisal of the > 3.7 Ga Isua (Greenland) supracrustal sequence. Geology 24:43–46.
    OpenUrlAbstract/FREE Full Text
    1. Rubey W.W.
    (1951) Geological history of seawater: An attempt to state the problem. Bulletin of the Geological Society of America 62:1111–1147.
    OpenUrlAbstract/FREE Full Text
    1. Russell M. J.
    (1988) in Proceedings of the seventh IAGOD Symposium, Chimneys, chemical gardens and feldspar horizons ± pyrrhotine in some SEDEX deposits: aspects of alkaline environments of deposition, ed Zachrisson E. (Schweizerbartsche Verlagsbuchhandlung), pp 183–190.
    1. Russell M.J.
    (1996a) Life from the depths: The generation of life and ore deposits at hot springs. Science Spectra 1, 4:26–31.
    OpenUrl
    1. Russell M.J.
    (1996b) The generation at hot springs of ores, microbialites and life. Ore Geology Reviews 10:199–214.
    OpenUrlCrossRefWeb of Science
    1. Russell M.J.,
    2. Hall A. J.
    (1995) in Mineral Deposits: From their Origin to their Environmental Impact, The emergence of life at hot springs: A basis for understanding the relationships between organics and mineral deposits, eds Pasava J., Kribek B., Zak K. (A.A. Balkema, Rotterdam), pp 793–796.
    1. Russell M.J.,
    2. Daniel R.M.,
    3. Hall A.J.
    (1993) On the emergence of life via catalytic iron sulphide membranes. Terra Nova 5:343–347.
    OpenUrlCrossRefWeb of Science
    1. Russell M.J.,
    2. Daniel R.M.,
    3. Hall A.J.,
    4. Sherringham J.
    (1994) A hydrothermally precipitated catalytic iron sulphide membrane as a first step toward life. Journal of Molecular Evolution 39:231–243.
    OpenUrlCrossRefWeb of Science
    1. Russell M.J.,
    2. Hall A.J.,
    3. Cairns-Smith A.G.,
    4. Braterman P.S.
    (1988) Submarine hot springs and the origin of life. Correspondence Nature 336:117.
    OpenUrl
    1. Russell M.J.,
    2. Hall A.J.,
    3. Turner D.
    (1989) In vitro growth of iron sulphide chimneys: Possible culture chambers for origin-of-life experiments. Terra Nova 1:238–241.
    OpenUrlCrossRef
    1. Russell M.J.,
    2. Solomon M.,
    3. Walshe J.L.
    (1981) The genesis of sediment-hosted, exhalative zinc+lead desposits. Mineralium Deposita 16:113–127.
    OpenUrlWeb of Science
    1. Sanchez R.A.,
    2. Ferri J.P.,
    3. Orgel L.E.
    (1967) Studies in prebiotic synthesis II. Synthesis of purine precursors and amino acids from aqueous hydrogen cyanide Journal of Molecular Biology 30:223–253.
    OpenUrlPubMedWeb of Science
    1. Sarkar S.,
    2. Das S.K.
    (1992) CO2 fixation by [WIVO(S2C2(CN)2)2]2–: functional model for the tungsten-formate dehydrogenase of Clostridium thermoaceticum. Proceedings of the Indian Academy of Sciences (Chemical Science) 104:533–534.
    OpenUrl
    1. Schopf J.W.
    (1983) Earth's Earliest Biosphere: Its Origin and Evolution (Princeton University Press, New Jersey).
    1. Schwartz A.W.,
    2. Goverde M.
    (1982) Acceleration of HCN oligomerization by formaldehyde and related compounds: Implications for prebiotic synthesis. Journal of Molecular Evolution 18:351–353.
    OpenUrlCrossRefPubMedWeb of Science
    1. Schwartzman D.,
    2. McMenamin M.,
    3. Volk T.
    (1993) Did surface temperatures constrain micobial evolution. Bioscience 43:390–393.
    OpenUrlCrossRefPubMedWeb of Science
    1. Seward T.M.
    (1973) Thio complexes of gold and the transport of gold in hydrothermal ore solutions. Geochimica et Cosmochimica Acta 37:379–399.
    OpenUrlCrossRefWeb of Science
    1. Seyfried W.E.,
    2. Kang Ding,
    3. Berndt M.
    (1991) Phase equilibria constraints on the chemistry of hot spring fluids at mid-ocean ridges. Geochimica et Cosmochimica Acta 55:3559–3580.
    OpenUrlCrossRefWeb of Science
    1. Shock E.L.
    (1992) Chemical environments of submarine hydrothermal systems. Origins of Life and Evolution of the Biosphere 22:67–107.
    OpenUrlCrossRefWeb of Science
    1. Shock E.L.
    (1996) Hydrothermal systems as environments for the emergence of life. in Evolution of Hydrothermal Ecosystems on Earth (and Mars?), CIBA Foundation Symposium, eds Bock G.R., Goode J.A. 202:40–52.
    OpenUrl
  6. Shock, E.L. & Schulte, M. D.1995. Hydrothermal systems as locations of organic synthesis on the early Earth and Mars.EOS, Transactions of the American Geophysical Union, 76/46 Supplement, (P21A-6), F335.
    1. Shock E.L.,
    2. McCollom T.,
    3. Schulte M.D.
    (1995) Geochemical constraints on chemolithoau to trophic reactions in hydrothermal systems. Origins of Life and Evolution of the Biosphere 25:141–159.
    OpenUrlCrossRefPubMedWeb of Science
    1. Sillen L.G.
    (1965) Oxidation state of Earth's ocean and atmosphere I. A model calculation on earlier states. The myth of the ‘‘probiotic soup’’ Arkiv för Kemi Bd 24, nr 30:431–456.
    OpenUrl
    1. Spooner E.T.C.,
    2. Chapman H.J.,
    3. Smewing J.D.
    (1977) Strontium isotopic contamination and oxidation during ocean floor hydrothermal metamorphism of the ophiolitic rocks of the Troodos Massif, Cyprus. Geochimica et Cosmochimica Acta 41:873–890.
    OpenUrlCrossRefWeb of Science
    1. Steigerwald V.J.,
    2. Beckler G.S.,
    3. Reeve J.N.
    (1990) Conservation of hydrogenase and polyferredoxin structures in the hyperthermophilic Archaebacterium Methanothermus fervidus. Journal of Bacteriology 172:4715–4718.
    OpenUrlAbstract/FREE Full Text
    1. Stetter K. O.
    (1992) in Frontiers of Life, Life at the upper temperature border, eds Tran Than Van J., Tran Than Van K., Mounolou J. C., Schneider J., McKay C. (Editions Frontieres, Gif-sur-Yvette), pp 195–219.
    1. Stetter K.O.
    (1996) Hyperthermophilic procaryotes. FEMS Microbiology Reviews 18:149–158.
    OpenUrlCrossRefWeb of Science
    1. Stiefel E.I.,
    2. George G. N.
    (1994) in Bioinorganic Chemistry, Ferredoxins, hydrogenases and nitro-genases: Metal-sulfide proteins, eds Bertini I., Gray H.B., Lippard S.J., Valentine J.S. (University Science Books, California), pp 365–454.
    1. Tezuka M.,
    2. Yajima T.,
    3. Tsuchiya A.,
    4. Matsumoto Y.,
    5. Uchida Y.,
    6. Hidai M.
    (1982) Electroreduction of carbon dioxide catalysed by iron-sulfur clusters [Fe4S4(SR)4]2 –Journal of the American Chemical Society 104:6834–6836.
    OpenUrlCrossRefWeb of Science
    1. Thauer R.K.,
    2. Jungermann K.,
    3. Decker K.
    (1977) Energy conservation in chemotrophic anaerobic bacteria. Bacteriological Reviews 41:100–180.
    OpenUrlFREE Full Text
  7. Thorstenson, D.C. 1984. The concept of electron activity and its relation to redox potentials in aqueous geochemical systems. U.S. Geological Survey Open-File Report, 84–072.
    1. Vaughan D.J.
    (1969) Nickelian mackinawite from Vlakfontein, Transvaal. American Mineralogist 54:1190–1193.
    OpenUrlWeb of Science
    1. Vaughan D.J.
    (1970) Nickelian mackinawite from Vlakfontein, Transvaal: a reply. American Mineralogist 55:1807–1808.
    OpenUrlWeb of Science
    1. Vaughan D.J.,
    2. Ridout M.S.
    (1971) Mössbauer studies of some sulphide minerals. Journal of Inorganic Nuclear Chemistry 33:741–746.
    OpenUrlCrossRefWeb of Science
    1. Voevodin V.N.,
    2. Garan V.I.,
    3. Zhitkov N.G.,
    4. Permyakov A.P.,
    5. Tsopanov O.Kh.
    (1979) [Tungsten mineralization in listvenites of the Tamvatnei ore cluster]. Geologiya Rudnykh Mestorozhdeniy 3:43–55, [in Russian].
    OpenUrl
    1. Volbeda A.,
    2. Charon M.-H.,
    3. Piras C.,
    4. Hatchikian E.C.,
    5. Frey M.,
    6. Fontecilla-Camps J.C.
    (1995) Crystal structure of the nickel-iron hydro-genase from Desulfovibrio gigas. Nature 373:580–587.
    OpenUrlCrossRefPubMedWeb of Science
    1. Von Damm K.L.
    (1990) Sea floor hydrothermal activity: Black smoker chemistry and chimneys. Annual Review of Earth and Planetary Sciences 18:173–204.
    OpenUrlCrossRefWeb of Science
    1. Wächtershäuser G.
    (1988) Pyrite formation, the first energy source for life: A hypothesis. Systematic Applied Microbiology 10:207–210.
    OpenUrl
    1. Wächtershäuser G.
    (1990) Evolution of the first metabolic cycles. Proceedings of the National Academy of Sciences USA 87:200–204.
    OpenUrlAbstract/FREE Full Text
    1. Wächtershäuser G.
    (1992) Groundworks for an evolutionary biochemistry: The iron-suphur world. Progress in Biophysics and Molececular Biology 58:85–201.
    OpenUrlCrossRef
    1. Wald G.
    (1962) in Horizons in Biochemistry, Life in the second and third periods; or why phosphorous and sulphur for high energy bonds? eds Kasha M., Pullman B. (Academic Press, New York), pp 127–141.
    1. Wald G.
    (1964) The origins of life. Proceedings of the National Academy of Science USA 52:595–611.
    OpenUrlFREE Full Text
    1. Walde P.,
    2. Goto A.,
    3. Monnard P.A.,
    4. Wessicken M.,
    5. Luisi P.L.
    (1994) Oparin's reactions revisited: Enzymatic synthesis of poly(adenylic acid) in micelles and self-reproducing vesicles. Journal of the American Chemical Society 116:7541–7547.
    OpenUrlCrossRefWeb of Science
    1. Walker J.C.G.
    (1985) Carbon dioxide on the early Earth. Origins of Life and Evolution of the Biosphere 16:117–127.
    OpenUrlCrossRefPubMedWeb of Science
    1. Wardrup M.M.
    (1990) Goodbye to the warm little pond? Science 250:1078–1080.
    OpenUrlFREE Full Text
    1. Wiebe R.,
    2. Gaddy V.L.
    (1934) The solubility of hydrogen in water at 0, 50, 75 and 100° from 25 to 1000 atmospheres. Journal of the American Chemical Society 56:76–79.
    OpenUrlCrossRefWeb of Science
    1. Williams R.J.P.
    (1961) Functions of chains of catalysts. Journal of Theoretical Biology 1:1–13.
    OpenUrlPubMed
    1. Williams R.J.P.
    (1965) in Non-Heme Iron Proteins: Role in Energy Conversion, Electron migration in iron compounds, ed San Pietro A. (The Antioch Press, Yellow Springs, Ohio), pp 7–22.
    1. Woese C.R.
    (1965) On the evolution of the genetic code. Proceedings of the National Academy of Sciences USA 54:1546–1552.
    OpenUrlFREE Full Text
    1. Woese C.R.,
    2. Fox G.E.
    (1977) The concept of cellular evolution. Journal of Molecular Evolution 10:1–6.
    OpenUrlCrossRefPubMedWeb of Science
    1. Woese C.R.,
    2. Kandler O.,
    3. Wheelis M.L.
    (1990) Towards a natural system of organisms: Proposals for the domains Archaea, Bacteria, and Eucarya. Proceedings of the National Academy of Science USA 87:4576–4579.
    OpenUrlAbstract/FREE Full Text
    1. Wöhler F.
    (1828) La formation artificielle de l'urée. Annales de Chimie et de Physique 37:330–334.
    OpenUrl
    1. Wolfe R. S.
    (1992) in The Archaebacteria, Biochemistry of methanogensis, eds Danson M.J., Hough D.W., Lunt G.G. (Portland Press, London) Biochemical Society Symposium, 58, pp 41–49.
    1. Wood H.G.
    (1977) Some reactions in which inorganic pyrophosphate replaces ATP and serves as a source of energy. Federation Proceedings of the Federation of the American Societies for Experimental Biology 36:2197–2205.
    OpenUrl
    1. Wood H.G.
    (1985) Inorganic pyrophosphate and pyrophosphates as sources of energy. Current Topics in Cellular Regulation 26:355–369.
    OpenUrlCrossRefPubMedWeb of Science
    1. Yamagata Y.,
    2. Wanatabe H.,
    3. Saitoh M.,
    4. Namba T.
    (1991) Volcanic production of polyphosphates and its relevance to prebiotic evolution. Nature 352:516–519.
    OpenUrlCrossRefPubMedWeb of Science
    1. Zhang Y.
    (1996) Dynamics of CO2-driven lake eruptions. Nature 379:57–59.
    OpenUrlCrossRef
PreviousNext
Back to top

In this issue

Journal of the Geological Society: 154 (3)
Journal of the Geological Society
Volume 154, Issue 3
May 1997
  • Table of Contents
  • Index by author
Alerts
Sign In to Email Alerts with your Email Address
Citation tools

The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front

M. J. RUSSELL and A. J. HALL
Journal of the Geological Society, 154, 377-402, 1 May 1997, https://doi.org/10.1144/gsjgs.154.3.0377
M. J. RUSSELL
Department of Geology and Applied Geology, University of Glasgow, Glasgow G12 8QQ, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
A. J. HALL
Department of Geology and Applied Geology, University of Glasgow, Glasgow G12 8QQ, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions
View PDF
Share

The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front

M. J. RUSSELL and A. J. HALL
Journal of the Geological Society, 154, 377-402, 1 May 1997, https://doi.org/10.1144/gsjgs.154.3.0377
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Email to

Thank you for sharing this Journal of the Geological Society article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front
(Your Name) has forwarded a page to you from Journal of the Geological Society
(Your Name) thought you would be interested in this article in Journal of the Geological Society.
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Article
  • Info & Metrics
  • PDF

Related Articles

Similar Articles

Cited By...

More in this TOC Section

  • Repeated tabular injection of high-level alkaline granites in the eastern Bushveld, South Africa
  • Volcanic plume monitoring using atmospheric electric potential gradients
Show more: Article
  • Most read
  • Most cited
Loading
  • The Mesoproterozoic Stac Fada proximal ejecta blanket, NW Scotland: constraints on crater location from field observations, anisotropy of magnetic susceptibility, petrography and geochemistry
  • A reassessment of the proposed ‘Lairg Impact Structure’ and its potential implications for the deep structure of northern Scotland
  • The Herefordshire Lagerstätte: fleshing out Silurian marine life
  • Where does the time go? Assessing the chronostratigraphic fidelity of sedimentary geological outcrops in the Pliocene–Pleistocene Red Crag Formation, eastern England
  • Fabrics and water contents of peridotites in the Neotethyan Luobusa ophiolite, southern Tibet: implications for mantle recycling in supra-subduction zones
More...

Journal of the Geological Society

  • About the journal
  • Editorial Board
  • Submit a manuscript
  • Author information
  • Supplementary Publications
  • Subscribe
  • Pay per view
  • Alerts & RSS
  • Copyright & Permissions
  • Activate Online Subscription
  • Feedback
  • Help

Lyell Collection

  • About the Lyell Collection
  • Lyell Collection homepage
  • Collections
  • Open Access Collection
  • Open Access Policy
  • Lyell Collection access help
  • Recommend to your Library
  • Lyell Collection Sponsors
  • MARC records
  • Digital preservation
  • Developing countries
  • Geofacets
  • Manage your account
  • Cookies

The Geological Society

  • About the Society
  • Join the Society
  • Benefits for Members
  • Online Bookshop
  • Publishing policies
  • Awards, Grants & Bursaries
  • Education & Careers
  • Events
  • Geoscientist Online
  • Library & Information Services
  • Policy & Media
  • Society blog
  • Contact the Society

Published by The Geological Society of London, registered charity number 210161

Print ISSN 
0016-7649
Online ISSN 
2041-479X

Copyright © 2019 Geological Society of London