Skip to main content

Main menu

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Issue in progress
    • All issues
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Other member type access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of the Geological Society
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London
  • My alerts
  • Log in
  • My Cart
  • Follow gsl on Twitter
  • Visit gsl on Facebook
  • Visit gsl on Youtube
  • Visit gsl on Linkedin
Journal of the Geological Society

Advanced search

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Issue in progress
    • All issues
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Other member type access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit

Mudrock‐hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition

R. RAISWELL and Q. J. FISHER
Journal of the Geological Society, 157, 239-251, 1 January 2000, https://doi.org/10.1144/jgs.157.1.239
R. RAISWELL
1Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK (e‐mail: )
  • Find this author on Google Scholar
  • Search for this author on this site
Q. J. FISHER
1Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK (e‐mail: )
  • Find this author on Google Scholar
  • Search for this author on this site
PreviousNext
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

Existing interpretations of cement textures and isotopic compositions may significantly under‐estimate the depth and duration of concretionary growth. Minus‐cement porosities can commonly under‐estimate depths of concretionary growth for some, or all, of the following reasons; (i) cements might not passively replace host sediment porosity, (ii) non‐cement carbonate phases (such as replaced bioclastic carbonate) can be significant, (iii) sediment compaction models over‐estimate rates of porosity loss at shallow (<500 m) depths and (iv) cementation can create a framework that prevents compaction and preserves porosity. Cement textures can be used to distinguish two modes of growth; concentric growth, where successive layers of cement are added to the outer surface (radius increases with time), and pervasive growth, where cement crystals grow simultaneously throughout the concretion volume (little or no radius increase with time). Cement textures of siderite concretions are mostly consistent with pervasive growth, but many calcite microsparite concretions show no diagnostic textural features and could grow either concentrically or pervasively. Concretionary cementation, whether concentric or pervasive, occurred such that there was accessible porosity which could be filled by later cements. Pervasive growth in particular is associated with the retention of substantial amounts of porosity which may be filled by chemically and isotopically distinct phases. The resulting chemical gradients across concretions may then reflect variations in the relative proportions of early and later cements more than variations in porewater composition.

Carbon isotope data from modern sediments show that dissolved carbonate in the methanogenic zone has a continuum of values from −30‰ to +15‰, and thus overlaps 13C‐depleted values normally considered characteristic of sulphate reduction. Many concretions previously thought to have grown entirely during sulphate reduction may therefore have continued cementation during methanogenesis, indicating a deeper and more prolonged cementation history. The necessary carbonate supersaturation for concretionary growth could either occur throughout the porewaters (the equilibrium model), or be generated in situ by organic matter decay (the local‐equilibrium model), or created where external fluids are introduced (the fluid‐mixing model).

  • concretions
  • carbonates
  • precipitation
  • 18O
  • 13C

Scientific editing by John Cope.

  • © 2000 The Geological Society of London
View Full Text

Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.

INDIVIDUALS

Log in using your username and password

– GSL fellows: log in with your Lyell username and password. (Please check your access entitlements at https://www.geolsoc.org.uk/fellowsaccess)
– Other users: log in with the username and password you created when you registered. Help for other users is at https://www.geolsoc.org.uk/lyellcollection_faqs
Forgot your username or password?

Purchase access

You may purchase access to this article for 24 hours and download the PDF within the access period. This will require you to create an account if you don't already have one. To download the PDF, click the 'Purchased Content' link in the receipt email.

LIBRARY USERS

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.
If you think you should have access, please contact your librarian or email sales@geolsoc.org.uk

LIBRARIANS

Administer your subscription.

CONTACT US

If you have any questions about the Lyell Collection publications website, please see the access help page or contact sales@geolsoc.org.uk

PreviousNext
Back to top

In this issue

Journal of the Geological Society: 157 (1)
Journal of the Geological Society
Volume 157, Issue 1
January 2000
  • Table of Contents
  • Index by author
Alerts
Sign In to Email Alerts with your Email Address
Citation tools

Mudrock‐hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition

R. RAISWELL and Q. J. FISHER
Journal of the Geological Society, 157, 239-251, 1 January 2000, https://doi.org/10.1144/jgs.157.1.239
R. RAISWELL
1Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK (e‐mail: )
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
Q. J. FISHER
1Department of Earth Sciences, University of Leeds, Leeds LS2 9JT, UK (e‐mail: )
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions
View PDF
Share

Mudrock‐hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition

R. RAISWELL and Q. J. FISHER
Journal of the Geological Society, 157, 239-251, 1 January 2000, https://doi.org/10.1144/jgs.157.1.239
del.icio.us logo Digg logo Reddit logo Twitter logo CiteULike logo Facebook logo Google logo Mendeley logo
Email to

Thank you for sharing this Journal of the Geological Society article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Mudrock‐hosted carbonate concretions: a review of growth mechanisms and their influence on chemical and isotopic composition
(Your Name) has forwarded a page to you from Journal of the Geological Society
(Your Name) thought you would be interested in this article in Journal of the Geological Society.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
Download PPT
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Article
    • Abstract
    • Physical properties of concretions during growth
    • Timing and mode of concretionary growth: synthesis of the physical evidence
    • Concretion composition: evidence from chemical and mineralogical gradients
    • Carbonate sources: evidence from carbon isotopes
    • Fluid sources: evidence from oxygen isotopes
    • Evidence from Recent sediments
    • Synthesis: chemical growth models
    • Summary and conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Similar Articles

Cited By...

More in this TOC Section

  • Structural evolution of the Li Basin, northern Thailand
  • Evidence of hydrocarbon and metalliferous fluid migration in the Palaeoproterozoic Earaheedy Basin of Western Australia
  • Silurian K‐bentonites of the Dnestr Basin, Podolia, Ukraine
Show more: Paper
  • Most read
  • Most cited
Loading
  • Geological Society of London Scientific Statement: what the geological record tells us about our present and future climate
  • Linking surface and subsurface volcanic stratigraphy in the Turkana Depression of the East African Rift system
  • Nature and significance of rift-related, near-surface fissure-fill networks in fractured carbonates below regional unconformities
  • Terrestrial stratigraphical division in the Quaternary and its correlation
  • The Shibantan Lagerstätte: insights into the Proterozoic–Phanerozoic transition
More...

Journal of the Geological Society

  • About the journal
  • Editorial Board
  • Submit a manuscript
  • Author information
  • Supplementary Publications
  • Subscribe
  • Pay per view
  • Alerts & RSS
  • Copyright & Permissions
  • Activate Online Subscription
  • Feedback
  • Help

Lyell Collection

  • About the Lyell Collection
  • Lyell Collection homepage
  • Collections
  • Open Access Collection
  • Open Access Policy
  • Lyell Collection access help
  • Recommend to your Library
  • Lyell Collection Sponsors
  • MARC records
  • Digital preservation
  • Developing countries
  • Geofacets
  • Manage your account
  • Cookies

The Geological Society

  • About the Society
  • Join the Society
  • Benefits for Members
  • Online Bookshop
  • Publishing policies
  • Awards, Grants & Bursaries
  • Education & Careers
  • Events
  • Geoscientist Online
  • Library & Information Services
  • Policy & Media
  • Society blog
  • Contact the Society

Published by The Geological Society of London, registered charity number 210161

Print ISSN 
0016-7649
Online ISSN 
2041-479X

Copyright © 2021 Geological Society of London