Skip to main content

Main menu

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Issue in progress
    • All issues
    • All collections
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Other member type access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London

User menu

  • My alerts
  • Log in
  • My Cart

Search

  • Advanced search
Journal of the Geological Society
  • Geological Society of London Publications
    • Engineering Geology Special Publications
    • Geochemistry: Exploration, Environment, Analysis
    • Journal of Micropalaeontology
    • Journal of the Geological Society
    • Lyell Collection home
    • Memoirs
    • Petroleum Geology Conference Series
    • Petroleum Geoscience
    • Proceedings of the Yorkshire Geological Society
    • Quarterly Journal of Engineering Geology and Hydrogeology
    • Quarterly Journal of the Geological Society
    • Scottish Journal of Geology
    • Special Publications
    • Transactions of the Edinburgh Geological Society
    • Transactions of the Geological Society of Glasgow
    • Transactions of the Geological Society of London
  • My alerts
  • Log in
  • My Cart
  • Follow gsl on Twitter
  • Visit gsl on Facebook
  • Visit gsl on Youtube
  • Visit gsl on Linkedin
Journal of the Geological Society

Advanced search

  • Home
    • Journal home
    • Lyell Collection home
    • Geological Society home
  • Content
    • Online First
    • Issue in progress
    • All issues
    • All collections
    • Thematic Collections
    • Supplementary publications
    • Open Access
  • Subscribe
    • GSL fellows
    • Institutions
    • Corporate
    • Other member types
  • Info
    • Authors
    • Librarians
    • Readers
    • GSL Fellows access
    • Other member type access
    • Press office
    • Accessibility
    • Help
    • Metrics
  • Alert sign up
    • eTOC alerts
    • Online First alerts
    • RSS feeds
    • Newsletters
    • GSL blog
  • Submit

Marine emplacement of welded ignimbrite: the Ordovician Pitts Head Tuff, North Wales

PETER KOKELAAR and STEPHAN KÖNIGER
Journal of the Geological Society, 157, 517-536, 1 May 2000, https://doi.org/10.1144/jgs.157.3.517
PETER KOKELAAR
1Earth Sciences Department, Liverpool University, Liverpool L69 3BX, UK (e‐mail: )
  • Find this author on Google Scholar
  • Search for this author on this site
STEPHAN KÖNIGER
2Institut für Geologie, Universität Würzburg, Pleicherwall 1, D‐97070 Würzburg, Germany
  • Find this author on Google Scholar
  • Search for this author on this site
PreviousNext
  • Article
  • Figures & Data
  • Info & Metrics
  • PDF
Loading

Abstract

The Pitts Head welded ignimbrite records a subaerial, large‐volume eruption and associated pyroclastic current that flowed into the sea. The current 15 km from source was steadily sustained with high mass flux and high particle concentration towards its base, and it entered the sea without substantial mixing with water and thus without large‐scale hydroexplosivity and without general cooling. It continued to aggrade ignimbrite at >580°C for at least 3–4 km from the original shoreline, in water initially ≥50 m deep. Entirely subaqueous, hot‐state, progressive aggradation and welding of the ignimbrite occurred where the water could not be wholly displaced by the current, although eventually the deposit displaced the shore >4 km seawards. Wet sea‐floor sediments buried by the ignimbrite were heated and locally fluidized by steam, and several square kilometres of hot ignimbrite with variable thicknesses of sedimentary substrate detached and slid downslope. Directions of sliding and the order of piling‐up of slide sheets are shown by hot‐state (rheomorphic) deformation fabrics and the geometric relations of detachment surfaces. Extensional disruption of the ignimbrite is marked by breaks in the sheet via which fluidized sediments were mobilized, locally to form rootless vents. Both the initial incursion of the pyroclastic current into the sea and the subsequent submarine sliding of the ignimbrite are likely to have caused tsunamis. Similar occurrences at modern coastlines presently susceptible to incursion of high mass flux pyroclastic currents (e.g. Taupo Volcanic Zone, New Zealand; Neapolitan region, Italy; vicinity of Manila (Taal), Philippines) would, according to tsunami propagation behaviour, cause significant near‐and far‐field coastal hazard.

  • density currents
  • ignimbrite
  • submarine volcanoes
  • fluidization
  • tsunami

Scientific editing by Jennie Gilbert.

  • © 2000 The Geological Society of London
View Full Text

Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.

INDIVIDUALS

Log in using your username and password

– GSL fellows: log in with your Lyell username and password. (Please check your access entitlements at https://www.geolsoc.org.uk/fellowsaccess)
– Other users: log in with the username and password you created when you registered. Help for other users is at https://www.geolsoc.org.uk/lyellcollection_faqs
Forgot your username or password?

Purchase access

You may purchase access to this article for 24 hours and download the PDF within the access period. This will require you to create an account if you don't already have one. To download the PDF, click the 'Purchased Content' link in the receipt email.

LIBRARY USERS

Log in through your institution

You may be able to gain access using your login credentials for your institution. Contact your library if you do not have a username and password.
If your organization uses OpenAthens, you can log in using your OpenAthens username and password. To check if your institution is supported, please see this list. Contact your library for more details.
If you think you should have access, please contact your librarian or email [email protected]

LIBRARIANS

Administer your subscription.

CONTACT US

If you have any questions about the Lyell Collection publications website, please see the access help page or contact [email protected]

PreviousNext
Back to top

In this issue

Journal of the Geological Society: 157 (3)
Journal of the Geological Society
Volume 157, Issue 3
May 2000
  • Table of Contents
  • Index by author
Alerts
Sign In to Email Alerts with your Email Address
Citation tools

Marine emplacement of welded ignimbrite: the Ordovician Pitts Head Tuff, North Wales

PETER KOKELAAR and STEPHAN KÖNIGER
Journal of the Geological Society, 157, 517-536, 1 May 2000, https://doi.org/10.1144/jgs.157.3.517
PETER KOKELAAR
1Earth Sciences Department, Liverpool University, Liverpool L69 3BX, UK (e‐mail: )
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
STEPHAN KÖNIGER
2Institut für Geologie, Universität Würzburg, Pleicherwall 1, D‐97070 Würzburg, Germany
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
Permissions
View PDF
Share

Marine emplacement of welded ignimbrite: the Ordovician Pitts Head Tuff, North Wales

PETER KOKELAAR and STEPHAN KÖNIGER
Journal of the Geological Society, 157, 517-536, 1 May 2000, https://doi.org/10.1144/jgs.157.3.517
del.icio.us logo Digg logo Reddit logo Twitter logo Facebook logo Google logo Mendeley logo
Email to

Thank you for sharing this Journal of the Geological Society article.

NOTE: We request your email address only to inform the recipient that it was you who recommended this article, and that it is not junk mail. We do not retain these email addresses.

Enter multiple addresses on separate lines or separate them with commas.
Marine emplacement of welded ignimbrite: the Ordovician Pitts Head Tuff, North Wales
(Your Name) has forwarded a page to you from Journal of the Geological Society
(Your Name) thought you would be interested in this article in Journal of the Geological Society.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Print
Download PPT
Bookmark this article
  • Tweet Widget
  • Facebook Like
  • Google Plus One
  • Article
    • Abstract
    • Geological setting
    • Depositional environment of the Pitts Head Tuff
    • Marine emplacement of the Pitts Head Tuff
    • Discussion
    • Conclusions
    • Acknowledgments
    • References
  • Figures & Data
  • Info & Metrics
  • PDF

Related Articles

Similar Articles

Cited By...

More in this TOC Section

  • Sedimentation associated with Antarctic Peninsula ice shelves: implications for palaeoenvironmental reconstructions of glacimarine sediments
  • Mechanics of layer-bound polygonal faulting in fine-grained sediments
  • Mid-crustal partitioning and attachment during oblique convergence in an arc system, Palaeoproterozoic Ketilidian orogen, southern Greenland
Show more: Regular Article
  • Most read
  • Most cited
Loading
  • The largest arthropod in Earth history: insights from newly discovered Arthropleura remains (Serpukhovian Stainmore Formation, Northumberland, England)
  • The naming of the Permian System
  • The Eocene−Oligocene transition in Nanggulan, Java: lithostratigraphy, biostratigraphy and foraminiferal stable isotopes
  • The Ediacaran origin of Ecdysozoa: integrating fossil and phylogenomic data
  • Meteorites that produce K-feldspar-rich ejecta blankets correspond to mass extinctions
More...

Journal of the Geological Society

  • About the journal
  • Editorial Board
  • Submit a manuscript
  • Author information
  • Supplementary Publications
  • Subscribe
  • Pay per view
  • Alerts & RSS
  • Copyright & Permissions
  • Activate Online Subscription
  • Feedback
  • Help

Lyell Collection

  • About the Lyell Collection
  • Lyell Collection homepage
  • Collections
  • Open Access Collection
  • Open Access Policy
  • Lyell Collection access help
  • Recommend to your Library
  • MARC records
  • Digital preservation
  • Developing countries
  • Geofacets
  • Manage your account
  • Cookies

The Geological Society

  • About the Society
  • Join the Society
  • Benefits for Members
  • Online Bookshop
  • Publishing policies
  • Awards, Grants & Bursaries
  • Education & Careers
  • Events
  • Geoscientist Online
  • Library & Information Services
  • Policy & Media
  • Society blog
  • Contact the Society

Published by The Geological Society of London, registered charity number 210161

Print ISSN 
0016-7649
Online ISSN 
2041-479X

Copyright © 2022 Geological Society of London