Abstract
We constrain the slip and cooling history of the Mykonos detachment footwall using thermochronometry. A U–Pb zircon age of 13.5 ± 0.3 Ma dates intrusion of the Mykonos monzogranite. 40Ar/39Ar hornblende and biotite ages from the monzogranite are 12.7 ± 0.6 Ma and 10.9 ± 0.6 Ma, whereas zircon and apatite fission-track ages range from 13 ± 0.8 Ma to 10.7 ± 0.8 Ma and 12.5 ± 2.2 Ma to 10.5 ± 1.8 Ma. (U–Th)/He ages range from 13.6 ± 0.6 Ma to 9.0 ± 0.7 Ma for zircon and 11.1 ± 0.5 Ma to 8.9 ± 0.4 Ma for apatite. The ages in part overlap within 2σ errors and together with the long apatite fission-track lengths (>14 μm) support rapid cooling at rates >100 °C Ma−1. The low-temperature thermochronometric ages decrease east-northeastwards in the direction of hanging-wall transport on the Mykonos detachment. Age–distance relationships show that the Mykonos detachment slipped at an average rate of 6.0 +9.2/−2.4 km Ma−1 causing c. 30 km of offset and c. 12 km of exhumation. This result indicates that Miocene low-angle normal faulting was not important for the exhumation of the Cycladic blueschist unit. The opening of the Aegean Sea basin in the Miocene was controlled by a few large-magnitude low-angle normal faults.
- © 2008 The Geological Society of London
Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.