Abstract
Slip along low-angle normal faults is a mechanical paradox requiring activation of strain weakening mechanisms. Microstructures present in the slip zones of incipient low-angle normal faults cutting carbonates in the Southern Apennines of Italy show that slip was promoted by two weakening mechanisms producing a reduction of the friction coefficient: (1) high pore fluid pressures; (2) dynamic weakening related to thermal decomposition indicated by decarbonation microstructures and concomitant localized dynamic calcite recrystallization. Furthermore, as a consequence of thermal decomposition, nanoparticles occur as infilling of injection veins, suggesting that powder lubrication processes are active along the slip surface during seismic slip.
Supplementary materials: A geological sketch of the study area, detailed field photographs of the studied faults and detailed micrographs are available at http://www.geolsoc.org.uk/SUP18806.
- © 2015 The Author(s)
Please note that if you are logged into the Lyell Collection and attempt to access content that is outside of your subscription entitlement you will be presented with a new login screen. You have the option to pay to view this content if you choose. Please see the relevant links below for further assistance.