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In summary, the Messinian evaporites beneath the bed of the 
western Ionian Sea display deformation styles that vary with 
depth and spatially. These variations imply that the evaporites 
have a gross mechanical stratigraphy, most probably halite-dom-
inated at depth but overlain by gypsum. The strongly reflective 
intra-evaporitic unit remains somewhat enigmatic. It is unlikely 
to be gypsum or carbonates as it behaves as a detachment beneath 
the buckle folds (Fig. 11b), and consequently is interpreted here 
as being significantly weaker than the thick beam of gypsum. 
Plausibly, these intra-evaporite reflectors represent muddy sedi-
ments. If so, the offshore evaporite stratigraphy may closely cor-
relate with that onshore Sicily. The lower evaporites offshore 
would be broadly correlative with the First Cycle of Sicily, 
though presumably younger and dating from the pan-Mediterra-
nean lowstand in water level (Butler et al. 1995). The detrital 
material and gypsum of the upper evaporitic levels offshore 
would correlate with the Second Cycle onshore Sicily. However, 
the inferred gypsum unit interpreted from Figure 11b is signifi-
cantly thicker (200 ms TWT, equivalent to c. 400–500 m) than  
its counterparts onshore. Further research, ideally tied to well 

penetrations in the offshore, is needed to corroborate these cor-
relations.

Discussion

Messinian evaporites on Sicily show complex lateral variations in 
both thickness and composition. These relate to the pattern of 
thrust-top minibasins. Integrating data from subsurface with out-
crop confirms the general findings of Butler et al. (1995) that rec-
ognized this primary basin structural control on Messinian 
stratigraphy. These stratigraphic variations went on to influence 
deformation styles in the thrust wedge.

For much of the study area, the Messinian strata form a compe-
tent beam generally composed of carbonates of the Calcare di 
Base. In the Montallegro fold belt the equivalent strata are massive 
gypsum units, and these too behaved as a competent beam encased 
in mud. Both units represent the First Cycle Messinian strata on 
Sicily, which accumulated during the protracted regression of 
palaeo-Mediterranean sea level. They are deformed in folds  
at a wavelength significantly reduced (c. 1 km) from the original 

Fig. 11. Seismic data from the western 
Ionian Sea. These images are provided 
courtesy of Fugro MCS and the Virtual 
Seismic Atlas (www.seismicatlas.
org), where high-resolution images are 
available. It should be noted that precise 
location information for these data is 
not publicly available but the general 
location is shown in Figure 1. The data 
are displayed in migrated two-way time 
profiles. As shown, the approximate 
vertical exaggeration for the evaporite 
levels is c. 2.5:1. (a) Partly interpreted 
seismic panel showing interpretation, 
based on the velocity and facies model of 
Valenti (2010). (b) Profile B, shown in 
clean and interpreted form. (c) Profile C, 
shown in clean and interpreted form.
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spacing of thrust-related folds (c. 5–10 km) across the thrust belt. 
The carbonate–gypsum beam behaves as a single competent layer 
that buckled. The amplification of this type of folding is limited by 
bending resistance at fold hinges (e.g. Casey & Butler 2004). 
Consequently, erosion across the crests of upright anticlines pro-
motes accelerated fold amplification and associated limb rotations. 
From seismic examples offshore Brazil, Fiduk & Rowan (2012) 
described intra-evaporite buckled layers that they inferred to be 
anhydrite, embedded in halite. In the Sicilian case, the competent 
beam is encased in poorly consolidated, low-competence, mud-
stone-dominated clastic deposits.

In some parts of the thrust belt, bathymetric patterns in miniba-
sins allowed halite to accumulate. These minibasins show differen-
tial deposition owing to amplification of bathymetry during 
deposition. In the case of the Corvillo Basin (Fig. 6) many hundred 
metres of halite and K-salts pass laterally to c. 15 m of carbonates 
(Fig. 7) in less than 2 km, direct evidence for continuing deforma-
tion during the Messinian in the thrust belt. These basins continued 
to deform after halite accumulation, during the regional lowstand 
in late Messinian times through the Mediterranean and subse-
quently during late Messinian–early Pliocene transgression.

Deformation in the halite-dominated basins is significantly 
more intense, with folding on scales of a few hundred metres to 
centimetres. Therefore these basins presumably act to localize 
deformation within the thrust wedge. A similar pattern can be 
interpreted in seismic data from the floor of the Ionian Sea. Halite 
deposits show significant thickening that in turn influenced Plio-
Quaternary deposition. Above thickened halite, these younger 
units are thinner than in the areas to the flanks.

It is interesting that massive First Cycle gypsum on Sicily (Fig. 
3) behaves in a similar fashion to carbonates of the Calcare di 
Base, in marked contrast to halite. Such behaviour is predicted by 
classical low-temperature rock deformation experiments (e.g. 
Handin & Hager 1957). However, it is at odds with the assump-
tions of Costa et al. (2004), who considered gypsum–anhydrite to 
have a similar competence to halite and thus act incompetently 
during deformation. Perhaps the difference lies in the depth of 
burial, and hence ambient temperature, at the time of deformation 
on Sicily compared with the Costa et al. (2004) study area of the 
Mediterranean Ridge. Costa et al. suggested that deformation in 
their example occurred under a blanket of 1000 m of post-
Messinian strata. The implication from Sicily is that shallowly bur-
ied gypsum need not form a weak layer within sedimentary 
successions, which may be important when considering mobiliza-
tion of evaporitic successions soon after their deposition. The 
buckle folds imaged seismically beneath the floor of the western 
Ionian Sea (Fig. 11b) may suggest that the evaporites here 
deformed under burial conditions more like those onshore Sicily 
than those that pertain to the Mediterranean Ridge. Certainly, the 
overlying sediments show onlap onto the flanks of the folded evap-
orites (Fig. 11b), indicating that deformation initiated when the 
evaporites were on the sea-bed. However, presumably if further 
sedimentation occurred above these folds the inferred gypsum 
layer would reduce in strength, as it warms and dehydrates to 
anhydrite, leading to a change in rheology. If temperature simply 
increases with depth in the overburden then this transition in rheol-
ogy would initiate in the syncline axes, so the gypsum beam could 
develop strongly heterogeneous deformation. It would be interest-
ing in the future to test this deduction on examples of progressively 
buried and deforming gypsum units elsewhere.

Seismic profiles from the floor of the Ionian Sea show variable 
structural styles, with different fold wavelengths. These fold geome-
tries, hitherto thought to produce the hummocky cobblestone morphol-
ogy seen seismically along the upper contact of Messinian evaporites 
elsewhere beneath the Mediterranean, may reflect lateral changes in 
evaporite composition. Using the structure of evaporitic units onshore 

Sicily as an immediate analogue, longer wavelength folding in the off-
shore may reflect deformation of competent gypsum layers whereas 
short-wavelength crenulated folds and apparently homogeneously 
thickened tracts may be chiefly halite-bearing. Similar variations in 
folding patterns may be expected in other weakly buried mixed evapo-
rite successions elsewhere in the global geological record.
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