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The strength of earthquake-generating faults

reconcile these results with the laboratory and borehole studies that
suggest much higher coefficients of friction.

Observations of fault dip distributions provide one means of
distinguishing between pore pressure and mineralogical effects on
fault friction. The dips at which faults are formed and reactivated
should depend on only the intrinsic coefficient of friction of the
rocks, and not the pore fluid pressure (e.g. Middleton & Copley
2014). The peak in seismogenic normal fault dips at close to 45°
(Fig. 2) therefore implies intrinsically low-friction materials on the
fault planes, presumably phyllosilicates (e.g. Byerlee 1978; Saffer
etal 2001; Brown et al. 2003). The formation and stability of these
fault rocks will be discussed below. The geological observations of
extensional veins produced by natural hydrofracture show that pore
fluid pressures can also be locally high (e.g. Ramsay 1980; Sibson
1994; Robert et al. 1995; Barker et al. 2006), either consistently or
transiently, and that the differential stresses when these features
formed are therefore likely to be low (e.g. Etheridge 1983). It
therefore seems likely that both weak minerals and high fluid
pressures play a role in producing faults with a low effective
coefficient of friction, although their relative importance and possible
spatial or temporal variability are currently harder to address. Deep
seismicity occurs in subducting slabs with similar stress drops to
shallow events (e.g. Ye et al. 2013). At such depths, even coefficients
of friction for phyllosilicates would predict unrealistically large
forces to cause faulting, implying that high pore fluid pressures
(possibly caused by metamorphic dehydration reactions; Raleigh
1967; Hacker et al. 2003) are crucial in this setting.

Laboratory experiments on fault rocks result in low estimates of
the coefficient of friction that are similar to those inferred from the
indirect methods discussed above. However, experiments on
samples with an absence of interconnected phyllosilicates, and
hydrofracture experiments in boreholes (which are based on the
extensional fracture of intact rock, rather then inducing shear slip on
pre-existing fault surfaces), imply much larger coefficients of
friction. Combining these observations implies that faults with
phyllosilicate-rich fault cores are embedded in intrinsically stronger
unfaulted rock. This reasoning is consistent with observations that
faults are often reactivated in non-optimal orientations during
changes in tectonic regime, rather than new faults forming (e.g.

Fig. 4. The vertically integrated force that
can be supported by the brittle upper
lithosphere, as a function of the effective
coefficient of friction and the thickness of
the seismogenic layer. The dashed lines
show values calculated for normal
faulting, and the dotted lines for reverse
faulting. The background is shaded
according to the reverse-faulting values.
Contours are labelled in units of 10'? N.
The 3 x 10'2 N contour for a reverse-
faulting setting is shown in bold, and
corresponds to the magnitude of the ‘ridge
push’ force in the oceans (Parsons &
Richter 1980).

Sibson 1990; Masson 1991; Avouac et al. 2014; Copley &
Woodcock 2016). However, this situation raises the questions of
how fault zones form initially, in order to develop into persistent
weaknesses, and how long this weakness can persist. These
questions are discussed below.

If the low coefficients of friction of active faults are in part related
to the presence of weak phyllosilicate-rich fault rocks, we must
consider the conditions in which these minerals are stable. Based
upon earthquake depth distributions, thermal models, field observa-
tions coupled with thermobarometry, and experimental results, rocks
are thought to be able to break in earthquakes to temperatures of
~300-350°C in hydrous assemblages, and ~600°C in anhydrous
settings (e.g. Kohlstedt ez al. 1995; Lund et al. 2004; McKenzie et al.
2005; Jackson et al. 2008). This temperature contrast is likely to be
due to the inefficiency of thermally activated creep mechanisms in
anhydrous rocks, meaning that for a given strain-rate brittle failure
can occur at lower differential stresses than ductile creep to greater
temperatures (e.g. Mackwell ef al. 1998; Jackson et al. 2008). Clay
minerals form the cores of many exposed fault zones (e.g. Rutter
et al. 1986; Faulkner et al. 2010), and the commonest of these (e.g.
illites, smectites, kaolinites) react to form micas and chlorite at
temperatures of 200-300°C (e.g. Frey 1978; Arkai 1991). In hydrous
settings, these minerals could therefore be prevalent in fault zones
through most or all of their depth range. Where faults break in
earthquakes at temperatures of up to ~600°C, it is likely that chlorite,
micas, talc, or serpentine minerals will be the dominant phyllosi-
licates, provided that fluid flow along the faults can allow these
hydrous minerals to form. Such a process is seen to happen in lower
crustal rocks that were metamorphosed during the Caledonian
Orogeny, where anhydrous granulites are transformed to hydrous
eclogites by fluid influx along faults (e.g. Austrheim et al. 1997).
However, for lower crustal earthquakes to occur at these elevated
temperatures, where ductile creep would be expected in hydrous
rocks, the degree of hydrous alteration must be small enough that the
deformation is still by earthquake faulting in a dominantly anhydrous
lower crust (e.g. Jackson ef al. 2004). Such a situation may represent
earthquakes nucleating at stress concentrations on the margins of
pockets of weak phyllosilicates, and dynamically propagating into
the surrounding anhydrous regions.
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The low effective coefficients of friction discussed above are
consistent with our knowledge of the forces involved in moving and
deforming the tectonic plates. The 5.5+ 1.5 Nm~! that India and
Tibet exert upon each other is able to rupture faults that cut through
the 40 — 50 km thick seismogenic layer of India, placing an upper
bound on the effective coefficient of friction of ¢. 0.1 (Fig. 4; Copley
etal. 2011a). An extension of this point is that because plate driving
forces are generally thought to be in the range of <5—10 N m™!
(e.g. Forsyth & Uyeda 1975; Parsons & Richter 1980; Molnar &
Lyon-Caen 1988; Conrad & Hager 1999; Copley et al. 2010), the
presence of active faulting in regions where the distribution of
earthquakes shows the seismogenic layer is >40 km thick (e.g.
Assumpcao & Suarez 1988; Craig ef al. 2011) means that the results
regarding India must be generally applicable to such regions, and
the effective coefficient of friction must be <0.2 (Fig. 4).

In contrast, some areas of the plate interiors show no clear signs of
significant deformation, which can be interpreted in two ways.
Where sparse microseismicity implies a low seismogenic thickness
(e.g. <20 km in the UK; Baptie 2010), the lack of deformation is
likely to be the result of low levels of differential stress. Such a
situation could arise because of, for example, the buoyancy force
acting across continental margins balancing the ridge push force
arising from the cooling of the adjacent oceanic lithosphere (e.g. Le
Pichon & Sibuet 1981; Pascal & Cloetingh 2009). However, some
undeforming regions of the continents presumably are subject to

significant forces, such as stable Eurasia, which experiences
approximately the same forces resulting from the construction of
the Alpine—Himalayan belt as does deforming India to the south. In
these regions the lack of deformation is likely to be due to the
lithosphere being cool and chemically depleted enough that the
seismogenic layer is so thick that even for low coefficients of
friction the forces acting on the plates are too small to cause faulting
(Fig. 4).

Simple calculations can be used to assess whether estimates of
fault strength are consistent with the rates of plate motion. The
results described above imply that differential stresses of tens of
megapascals can be transmitted across faults on the lateral
boundaries of plates. These stresses will be balanced by tractions
on the base of the plates, which depend upon the rate of motion
relative to the underlying mantle, and the thickness and viscosity of
the layer in which this motion is accommodated. A variety of
observations and models have suggested that the plate motions are
accommodated by shearing in the asthenosphere, with a thickness of
¢. 100—200 km and a viscosity of ~10'%-10!° Pa s (e.g. Craig &
McKenzie 1986; Hager 1991; Fjeldskaar 1994; Gourmelen &
Amelung 2005; Copley et al. 2010). For these parameters, if the
plates are thousands to tens of thousands of kilometres wide, then
they must move at rates of the order of centimetres to tens of
centimetres per year for the tractions on the base to balance the
forces transmitted across faults on their lateral edges, in agreement
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Fig. 5. Free-air gravity anomalies in Australia, from the Eigen-6C model of Forste ef al. (2011), contoured at 20 mGal intervals. Also shown are the
mechanisms of earthquakes of M,,, 5.5 and larger, from Fredrich er al. (1988), McCaffrey (1989) and the global CMT project. AB, Amadeus Basin.
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with observations. More detailed force-balance calculations for
single plates confirm this pattern (e.g. Copley et al. 2010; Warners-
Ruckstuhl et al. 2012).

Open questions

The discussion above has raised two important questions that have
yet to be fully answered. It seems apparent that faults that have
undergone enough slip to generate phyllosilicate-rich fault cores are
considerably weaker than unfaulted rock. This amount of slip could
be as little as tens of metres, depending on lithology (e.g. Lacroix
et al. 2015). If the differential stresses in the lithosphere are limited
by these pre-existing faults, this result raises the question of how
new faults are formed. One possibility is that high pore fluid
pressures, close to lithostatic, are required to initiate new faults. A
second possibility is that faults simply propagate along-strike,
driven by large stress concentrations at the ends of already existing
structures. This second mechanism clearly requires an explanation
for the formation of these existing features, but minimizes the rate at
which new structures are required to form, and so the prevalence of
the required conditions. The difficulties in identifying regions of
new fault formation, and mapping the ordering of fault develop-
ment, mean that the mechanism of initiation is still unknown. New
faults forming in the outer rises of subduction zones do so at an
angle that implies a low intrinsic coefficient of friction (Craig ez al.
2014a), but it remains to be established whether this observation
represents faults nucleating in regions where mid-ocean ridge
hydrothermal alteration has left a pre-existing network of weak
phyllosilicates, or whether these results imply a lack of applicability
of the laboratory and borehole measurements to those tectonic
conditions.

A final open question concerns fault healing through time. In
some continental interiors, large gravity anomalies are present that
were formed by juxtaposing rocks of different densities during
previous phases of faulting. One example is central Australia, which
contains some of the largest gravity anomalies in the continental
interiors (Fig. 5). These anomalies, running east—west and flanking
the Amadeus Basin (AB in Fig. 5), have been produced by repeated
phases of deformation, the most recent being shortening at 300 —
400 Ma (e.g. Shaw et al. 1991). The present-day gravity anomalies
require forces of >4 x 10'> N-m™! to be supported, equivalent to
vertically averaged differential stresses of ¢. 100—200 MPa (e.g.
Stephenson & Lambeck 1985). Such forces are significantly higher
than those able to break faults in the world’s deformation zones, as
discussed above. Faults are clearly present in the region of the
central Australian gravity anomalies, as these anomalies were
produced by faulting, and the same deformation zones were
repeatedly active in the Proterozoic and Palacozoic (Shaw et al.
1991). However, there is no evidence of these faults being active at
resolvable rates at the present day. The earthquake focal mechan-
isms in Figure 5 show that some of the present-day reverse-faulting
in central Australia is at angles perpendicular to that which would be
expected to result from the forces required to support the gravity
anomalies, showing that these forces do not drive the deformation.
These observations imply that faults must be able to heal over time,
and recover a strength more similar to intact rock. Whether this
healing is accomplished by solution and precipitation in the fault
zones (e.g. Angevine et al. 1982; Olson et al. 1998; Tenthorey et al.
2003; Yasuhara et al. 2005), metamorphic dehydration reactions
producing a strong anhydrous substrate beneath the faults (e.g.
Mackwell et al. 1998; Lund et al. 2004), or some other mechanism,
and the time and conditions required for these processes to occur,
remain open questions. Equally, it is not yet understood why these
processes should occur in some places, whereas in other continental
interiors inherited Proterozoic deformation belts still represent
weaknesses that govern the geometry of the active deformation, by

either brittle reactivation or the control of fault geometries by
Proterozoic ductile foliations (e.g. in East Africa and India; Versfelt
& Rosendahl 1989; Ring 1994; Ebinger et al. 1997; Talwani &
Gangopadhyay 2001; Chorowicz 2005).

Conclusions

The conceptual view most consistent with all available observations
and inferences of fault strength is that a combination of intrinsically
low-friction minerals (e.g. phyllosilicates) and high pore fluid
pressures results in a network of weak faults cutting through the
surrounding strong rocks. These faults can slip at shear stresses of
<50 MPa, corresponding to effective coefficients of friction of
0.05-0.3, and are at least 30% weaker than unfaulted rock. Major
questions remaining to be answered in this subject area include the
conditions required for the formation of new faults, and the
mechanisms, causes and consequences of fault healing through
time.
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